REVIEW ARTICLE

Multimode sensing based on optical microcavities

  • Yanran Wu 1,2 ,
  • Bing Duan 1,2 ,
  • Changhong Li , 3 ,
  • Daquan Yang , 1,2
Expand
  • 1. State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • 2. School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • 3. School of Electronic Information, Qingdao University, Qingdao 266071, China
jiluch@126.com
ydq@bupt.edu.cn

Received date: 27 Jul 2023

Accepted date: 08 Sep 2023

Published date: 15 Sep 2023

Copyright

2023 The Author(s) 2023

Abstract

Optical microcavities have the ability to confine photons in small mode volumes for long periods of time, greatly enhancing light-matter interactions, and have become one of the research hotspots in international academia. In recent years, sensing applications in complex environments have inspired the development of multimode optical microcavity sensors. These multimode sensors can be used not only for multi-parameter detection but also to improve measurement precision. In this review, we introduce multimode sensing methods based on optical microcavities and present an overview of the multimode single/multi-parameter optical microcavities sensors. Expected further research activities are also put forward.

Cite this article

Yanran Wu , Bing Duan , Changhong Li , Daquan Yang . Multimode sensing based on optical microcavities[J]. Frontiers of Optoelectronics, 2023 , 16(3) : 29 . DOI: 10.1007/s12200-023-00084-1

1
Zhi, Y., Yu, X., Gong, Q., Yang, L., Xiao, Y.: Single nanoparticle detection using optical microcavities. Adv. Mater. 29(12), 1604920 (2017)

DOI

2
Vollmer, F., Yang, L.: Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices. Nanophotonics 1(3–4), 267–291 (2012)

DOI

3
Fan, X.: Advanced photonic structures for biological and chemical detection. Springer, New York (2009)

DOI

4
Wang, K., Gao, Y.P., Jiao, R., Wang, C.: Recent progress on optomagnetic coupling and optical manipulation based on cavity-optomagnonics. Front. Phys. 17(4), 42201 (2022)

DOI

5
Artar, A., Yanik, A.A., Altug, H.: Fabry–Pérot nanocavities in multilayered plasmonic crystals for enhanced biosensing. Appl. Phys. Lett. 95(5), 051105 (2009)

DOI

6
Li, X., Chen, N., Zhou, X., Gong, P., Wang, S., Zhang, Y., Zhao, Y.: A review of specialty fiber biosensors based on interferometer configuration. J. BiophotonicsBiophotonics 14(6), e202100068 (2021)

DOI

7
Rho, D., Breaux, C., Kim, S.: Label-free optical resonator-based biosensors. Sensors (Basel) 20(20), 5901 (2020)

DOI

8
Tabassum, S., Kumar, R.: Advances in fiber-optic technology for point-of-care diagnosis and in vivo biosensing. Adv. Mater. Technol. 5(5), 1900792 (2020)

DOI

9
Chen, C., Wang, J.: Optical biosensors: an exhaustive and comprehensive review. Analyst (Lond.) 145(5), 1605–1628 (2020)

DOI

10
Yi, L., Li, C.: Simulation research on blood detection sensing with parity-time symmetry structure. Crystals (Basel) 11(9), 1030 (2021)

DOI

11
Nagarajan, K., Thomas, A., Ebbesen, T.W.: Chemistry under vibrational strong coupling. J. Am. Chem. Soc. 143(41), 16877–16889 (2021)

DOI

12
Li, T.E., Cui, B., Subotnik, J.E., Nitzan, A.: Molecular polaritonics: chemical dynamics under strong light-matter coupling. Annu. Rev. Phys. Chem. Rev. Phys. Chem. 73(1), 43–71 (2022)

DOI

13
Dong, H., Zhang, C., Liu, X., Yao, J., Zhao, Y.S.: Materials chemistry and engineering in metal halide perovskite lasers. Chem. Soc. Rev. 49(3), 951–982 (2020)

DOI

14
Wang, K., Wang, H., Wu, X.Y., Zhang, Y., Yang, D., Jiao, R., Wang, C.: Ultrasound sensing using packaged microsphere cavity in the underwater environment. Sensors (Basel) 22(11), 4190 (2022)

DOI

15
Xu, X., Chen, W., Zhao, G., Li, Y., Lu, C., Yang, L.: Wireless whispering-gallery-mode sensor for thermal sensing and aerial mapping. Light Sci. Appl. 7(1), 62 (2018)

DOI

16
Liu, N., Shi, L., Zhu, S., Xu, X., Yuan, S., Zhang, X.: Whispering gallery modes in a single silica microparticle attached to an optical microfiber and their application for highly sensitive displacement sensing. Opt. Express 26(1), 195–203 (2018)

DOI

17
Chen, L.H., Chan, C.C., Menon, R., Balamurali, P., Wong, W.C., Ang, X.M., Hu, P.B., Shaillender, M., Neu, B., Zu, P., Tou, Z.Q., Poh, C.L., Leong, K.C.: Fabry–Perot fiber-optic immunosensor based on suspended layer-by-layer (chitosan/polystyrene sulfonate) membrane. Sens. Actuators B Chem. 188, 185–192 (2013)

DOI

18
Lyu, S., Wu, Z., Shi, X., Wu, Q.: Optical fiber biosensors for protein detection: a review. In Photonics 9(12), 987 (2022)

DOI

19
Vollmer, F., Arnold, S., Keng, D.: Single virus detection from the reactive shift of a whispering-gallery mode. Proc. Natl. Acad. Sci. U.S.A. 105(52), 20701–20704 (2008)

DOI

20
Baaske, M.D., Vollmer, F.: Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution. Nat. Photonics 10(11), 733–739 (2016)

DOI

21
Dantham, V.R., Holler, S., Barbre, C., Keng, D., Kolchenko, V., Arnold, S.: Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity. Nano Lett. 13(7), 3347–3351 (2013)

DOI

22
Yang, D.Q., Duan, B., Liu, X., Wang, A.Q., Li, X.G., Ji, Y.F.: Photonic crystal nanobeam cavities for nanoscale optical sensing: a review. Micromachines (Basel) 11(1), 72 (2020)

DOI

23
Xia, J., Qiao, Q., Zhou, G., Chau, F.S., Zhou, G.: Opto-mechanical photonic crystal cavities for sensing application. Appl. Sci. (Basel) 10(20), 7080 (2020)

DOI

24
Qiao, Q., Xia, J., Lee, C., Zhou, G.: Applications of photonic crystal nanobeam cavities for sensing. Micromachines (Basel) 9(11), 541 (2018)

DOI

25
Wu, Y., Duan, B., Song, J., Tian, H., Chen, J.H., Yang, D., Huang, S.: Simultaneous temperature and pressure sensing based on a single optical resonator. Opt. Express 31(12), 18851–18861 (2023)

DOI

26
Yang, D.Q., Chen, J.H., Cao, Q.T., Duan, B., Chen, H.J., Yu, X.C., Xiao, Y.F.: Operando monitoring transition dynamics of responsive polymer using optofluidic microcavities. Light Sci. Appl. 10(1), 128 (2021)

DOI

27
Liao, J., Yang, L.: Optical whispering-gallery mode barcodes for high-precision and wide-range temperature measurements. Light Sci. Appl. 10(1), 32 (2021)

DOI

28
Duan, B., Zou, H., Chen, J.H., Ma, C.H., Zhao, X., Zheng, X., Wang, C., Liu, L., Yang, D.: High-precision whispering gallery microsensors with ergodic spectra empowered by machine learning. Photon. Res. 10(10), 2343–2348 (2022)

DOI

29
Chen, Z., Guo, Z., Mu, X., Li, Q., Wu, X., Fu, H.Y.: Packaged microbubble resonator optofluidic flow rate sensor based on Bernoulli Effect. Opt. Express 27(25), 36932–36940 (2019)

DOI

30
Zhan, X., Liu, Y., Yang, K.L., Luo, D.: State-of-the-art development in liquid crystal biochemical sensors. Biosensors (Basel) 12(8), 577 (2022)

DOI

31
Mathew, J., Schneller, O., Polyzos, D., Havermann, D., Carter, R.M., MacPherson, W.N., Hand, D.P., Maier, R.R.J.: In-fiber Fabry–Perot cavity sensor for high-temperature applications. J. Lightwave Technol. 33(12), 2419–2425 (2015)

DOI

32
Johari, M.A.M., Khudus, M.I.M.A., Jali, M.H.B., Al Noman, A., Harun, S.W.: Effect of size on single and double optical microbottle resonator humidity sensors. Sens. Actuators A Phys. 284, 286–291 (2018)

DOI

33
Zhang, Y.N., Zhu, N., Gao, P., Zhao, Y.: Magnetic field sensor based on ring WGM resonator infiltrated with magnetic fluid. J. Magn. Magn. Mater. 493, 165701 (2020)

DOI

34
Jiang, X., Qavi, A.J., Huang, S.H., Yang, L.: Whispering-gallery sensors. Matter 3(2), 371–392 (2020)

DOI

35
Baaske, M.D., Foreman, M.R., Vollmer, F.: Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nat. Nanotechnol. Nanotechnol. 9(11), 933–939 (2014)

DOI

36
Swaim, J.D., Knittel, J., Bowen, W.P.: Detection of nanoparticles with a frequency locked whispering gallery mode microresonator. Appl. Phys. Lett. 102(18), 183106 (2013)

DOI

37
Zhu, J., Ozdemir, S.K., Xiao, Y., Li, L., He, L., Chen, D., Yang, L.: On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photonics 4(1), 46–49 (2010)

DOI

38
Li, B.B., Clements, W.R., Yu, X.C., Shi, K., Gong, Q., Xiao, Y.F.: Single nanoparticle detection using split-mode microcavity Raman lasers. Proc. Natl. Acad. Sci. U.S.A. 111(41), 14657–14662 (2014)

DOI

39
Jin, M., Tang, S.J., Chen, J.H., Yu, X.C., Shu, H., Tao, Y., Chen Antony, K., Gong, Q., Wang, X., Xiao, Y.F.: 1/f-noise-free optical sensing with an integrated heterodyne interferometer. Nat. Commun. Commun. 12(1), 1973 (2021)

DOI

40
Yi, X., Xiao, Y.F., Li, Y., Liu, Y.C., Li, B.B., Liu, Z.P., Gong, Q.: Polarization-dependent detection of cylinder nanoparticles with mode splitting in a high-Q whispering-gallery microresonator. Appl. Phys. Lett. 97(20), 203705 (2010)

DOI

41
Xu, Y., Tang, S.J., Yu, X.C., Chen, Y.L., Yang, D., Gong, Q., Xiao, Y.F.: Mode splitting induced by an arbitrarily shaped Rayleigh scatterer in a whispering-gallery microcavity. Phys. Rev. A (Coll. Park) 97(6), 063828 (2018)

DOI

42
Kohler, L., Mader, M., Kern, C., Wegener, M., Hunger, D.: Tracking Brownian motion in three dimensions and characterization of individual nanoparticles using a fiber-based high-finesse micro-cavity. Nat. Commun. Commun. 12(1), 1–7 (2021)

DOI

43
Shao, L., Jiang, X., Yu, X., Li, B., Clements, W.R., Vollmer, F., Wang, W., Xiao, Y., Gong, Q.: Detection of single nanoparticles and lentiviruses using microcavity resonance broadening. Adv. Mater. 25(39), 5616–5620 (2013)

DOI

44
Madugani, R., Yang, Y., Le, V.H., Ward, J.M., Chormaic, S.N.: Linear laser tuning using a pressure-sensitive microbubble resonator. IEEE Photonics Technol. Lett. 28(10), 1134–1137 (2016)

DOI

45
Liu, S., Sun, W., Wang, Y., Yu, X., Xu, K., Huang, Y., Xiao, S., Song, Q.: End-fire injection of light into high Q silicon microdisks. Optica 5(5), 612–616 (2018)

DOI

46
Zhang, X., Liu, L., Xu, L.: Ultralow sensing limit in optofluidic micro-bottle resonator biosensor by self referenced differentialmode detection scheme. Appl. Phys. Lett. 104(3), 033703 (2014)

DOI

47
Li, M., Wu, X., Liu, L., Fan, X., Xu, L.: Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection. Anal. Chem. 85(19), 9328–9332 (2013)

DOI

48
Luo, R., Jiang, H., Liang, H., Chen, Y., Lin, Q.: Self-referenced temperature sensing with a lithium niobate microdisk resonator. Opt. Lett. 42(7), 1281–1284 (2017)

DOI

49
Savchenkov, A.A., Matsko, A.B., Ilchenko, V.S., Yu, N., Maleki, L.: Whispering-gallery-mode resonators as frequency references. II. Stabilization. J. Opt. Soc. Am. B 24(12), 2988–2997 (2007)

DOI

50
Guo, Z., Lu, Q., Zhu, C., Wang, B., Zhou, Y., Wu, X.: Ultra-sensitive biomolecular detection by external referencing optofluidic microbubble resonators. Opt. Express 27(9), 12424–12435 (2019)

DOI

51
Zhao, X., Zhou, Y., Li, Y., Guo, J., Liu, Z., Luo, M., Guo, Z., Yang, X., Zhang, M., Wang, Y., Wu, X.: Ultrasensitive optofluidic coupled Fabry–Perot capillary sensors. Opt. Express 30(25), 45070–45081 (2022)

DOI

52
Dong, Y., Sun, P., Zeng, X., Wang, J., Li, Y., Wang, M., Wang, H.: Displacement sensing in a multimode SNAP microcavity by an artificial neural network. Opt. Express 30(15), 27015–27027 (2022)

DOI

53
Zhou, Y., Yuan, Z., Gong, X., Birowosuto, M.D., Dang, C., Chen, Y.C.: Dynamic photonic barcodes for molecular detection based on cavity-enhanced energy transfer. Adv. Photonics 2(6), 066002 (2020)

DOI

54
Kumagai, Y., Takubo, K., Kawada, K., Aoyama, K., Endo, Y., Ozawa, T., Hirasawa, T., Yoshio, T., Ishihara, S., Fujishiro, M., Tamaru, J., Mochiki, E., Ishida, H., Tada, T.: Diagnosis using deep-learning artificial intelligence based on the endocytoscopic observation of the esophagus. Esophagus 16(2), 180–187 (2019)

DOI

55
Malik, P., Pathania, M., Rathaur, V.K.: Overview of artificial intelligence in medicine. J. Family Med. Prim. Care 8(7), 2328 (2019)

DOI

56
Suganyadevi, S., Seethalakshmi, V., Balasamy, K.: A review on deep learning in medical image analysis. Int. J. Multimed. Inf. Retr. 11(1), 19–38 (2022)

DOI

57
He, J., Baxter, S.L., Xu, J., Xu, J., Zhou, X., Zhang, K.: The practical implementation of artificial intelligence technologies in medicine. Nat. Med. 25(1), 30–36 (2019)

DOI

58
Lu, J., Niu, R., Wan, S., Dong, C.H., Le, Z., Qin, Y., Hu, Y., Hu, W., Zou, C.L., Ren, H.: Experimental demonstration of multimode microresonator sensing by machine learning. IEEE Sens. J. 21(7), 9046–9053 (2021)

DOI

59
Hu, D., Zou, C.L., Ren, H., Lu, J., Le, Z., Qin, Y., Guo, S., Dong, C., Hu, W.: Multi-parameter sensing in a multimode self-interference microring resonator by machine learning. Sensors (Basel) 20(3), 709 (2020)

DOI

60
Zhang, Y., Lu, J., Le, Z., Dong, C.H., Zheng, H., Qin, Y., Yu, P., Hu, W., Zou, C.L., Ren, H.: Proposal of unsupervised gas classification by multimode microresonator. IEEE Photonics J. 13(2), 5800111 (2021)

DOI

61
Chugh, S., Gulistan, A., Ghosh, S., Rahman, B.M.A.: Machine learning approach for computing optical properties of a photonic crystal fiber. Opt. Express 27(25), 36414–36425 (2019)

DOI

62
An, G., Omodaka, K., Hashimoto, K., Tsuda, S., Shiga, Y., Takada, N., Kikawa, T., Yokota, H., Akiba, M., Nakazawa, T.: Glaucoma diagnosis with machine learning based on optical coherence tomography and color fundus images. J. Healthc. Eng. 1 (2019)

DOI

63
Chen, H., Wang, Z., Wang, Y., Yu, C., Niu, R., Zou, C.L., Lu, J., Dong, C.H., Ren, H.: Machine learning-assisted high-accuracy and large dynamic range thermometer in high-Q microbubble resonators. Opt. Express 31(10), 16781–16794 (2023)

DOI

64
Saetchnikov, A.V., Tcherniavskaia, E.A., Skakun, V.V., Saetchnikov, V.A., Ostendorf, A.: Reusable dispersed resonators-based biochemical sensor for parallel probing. IEEE Sens. J. 19(17), 7644–7651 (2019)

DOI

65
Saetchnikov, A.V., Tcherniavskaia, E.A., Saetchnikov, V., Ostendorf, A.: Design and application of distributed microresonator-based systems for biochemical sensing. Opt. Sens. Detect. VI. SPIE 11354, 321–326 (2020)

DOI

66
Saetchnikov A. V., Tcherniavskaia E. A., Saetchnikov V. A., and Ostendorf, A.: Deep-learning powered whispering gallery mode sensor based on multiplexed imaging at fixed frequency. (2020)

DOI

67
Shah, S., Yu, C.N., Zheng, M., Kim, H., Eggleston, M.S.: Microparticle-based biochemical sensing using optical coherence tomography and deep learning. ACS Nano 15(6), 9764–9774 (2021)

DOI

68
Tian, X., Li, L., Chew, S.X., Gunawan, G., Nguyen, L., Yi, X.: Cascaded optical microring resonator based auto-correction assisted high resolution microwave photonic sensor. J. Light-wave Technol. 39(24), 7646–7655 (2021)

DOI

69
Liu, Y., Jing, Z., Liu, Q., Li, A., Lee, A., Cheung, Y., Zhang, Y., Peng, W.: All-silica fiber-optic temperature-depth-salinity sensor based on cascaded EFPIs and FBG for deep sea exploration. Opt. Express 29(15), 23953–23966 (2021)

DOI

70
Yang, D., Tian, H., Ji, Y.: Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays. Opt. Express 19(21), 20023–20034 (2011)

DOI

71
Yang, D., Tian, H., Ji, Y.: Nanoscale low crosstalk photonic crystal integrated sensor array. IEEE Photonics J. 6(1), 1–7 (2014)

DOI

72
Kavungal, V., Farrell, G., Wu, Q., Mallik, A.K., Shen, C., Semenova, Y.: Packaged inline cascaded optical micro-resonators for multi-parameter sensing. Opt. Fiber Technol. Fiber Technol. 50, 50–54 (2019)

DOI

73
Mallik, A.K., Farrell, G., Ramakrishnan, M., Kavungal, V., Liu, D., Wu, Q., Semenova, Y.: Whispering gallery mode micro resonators for multi-parameter sensing applications. Opt. Express 26(24), 31829–31838 (2018)

DOI

74
Zhang, C., Fu, S., Tang, M., Liu, D.: Parallel Fabry-Perot inter-ferometers fabricated on multicore-fiber for temperature and strain discriminative sensing. Opt. Express 28(3), 3190–3199 (2020)

DOI

75
Ma, Z., Chen, J., Wei, H., Zhang, L., Wang, Z., Chen, Z., Pang, F., Wang, T.: Compound Fabry-Pérot interferometer for simultaneous high-pressure and high-temperature measurement. Opt. Express 29(15), 24289–24299 (2021)

DOI

76
Ye, L., Liu, X., Pei, D., Peng, J., Liu, S., Guo, K., Li, X., Chen, X., Zhang, X., Yang, D.: Simultaneous detection of relative humidity and temperature based on silicon on-chip cascaded photonic crystal nanobeam cavities. Crystals (Basel) 11(12), 1559 (2021).

DOI

77
Wang, J., Chew, S.X., Song, S., Li, L., Nguyen, L., Yi, X.: Onchip simultaneous measurement of humidity and temperature using cascaded photonic crystal microring resonators with error correction. Opt. Express 30(20), 35608–35623 (2022)

DOI

78
Yi, L., Li, C.: Light enhanced absorption of graphene based on parity-time symmetry structure. Faguang Xuebao 43(1), 119–128 (2022)

DOI

79
Tan, T., Yuan, Z., Zhang, H., Yan, G., Zhou, S., An, N., Peng, B., Soavi, G., Rao, Y., Yao, B.: Multispecies and individual gas molecule detection using Stokes solitons in a graphene overmodal microresonator. Nat. Commun.Commun. 12(1), 6716 (2021)

DOI

80
Guo, Y., Li, Z., An, N., Guo, Y., Wang, Y., Yuan, Y., Zhang, H., Tan, T., Wu, C., Peng, B., Soavi, G., Rao, Y., Yao, B.: A monolithic graphene-functionalized microlaser for multispecies gas detection. Adv. Mater. 34(51), 2207777 (2022)

DOI

81
Le Cun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

DOI

82
Jordan, M.I., Mitchell, T.M.: Machine learning: trends, perspectives, and prospects. Science 349(6245), 255–260 (2015)

DOI

83
Li, Z., Zhang, H., Nguyen, B.T.T., Luo, S., Liu, P.Y., Zou, J., Shi, Y., Cai, H., Yang, Z., Jin, Y., Hao, Y., Zhang, Y., Liu, A.Q.: Smart ring resonator-based sensor for multicomponent chemical analysis via machine learning. Photon. Res. 9(2), B38–B44 (2021)

DOI

84
Ho, C.S., Jean, N., Hogan, C.A., Blackmon, L., Jeffrey, S.S., Holodniy, M., Banaei, N., Saleh, A.A.E., Ermon, S., Dionne, J.: Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning. Nat. Commun.Commun. 10(1), 4927 (2019)

DOI

85
Djurhuus, M.S., Werzinger, S., Schmauss, B., Clausen, A.T., Zibar, D.: Machine learning assisted fiber Bragg grating-based temperature sensing. IEEE Photonics Technol. Lett. 31(12), 939–942 (2019)

DOI

86
Hu, D., Zou, C.L., Ren, H., Lu, J., Le, Z., Qin, Y., Guo, S., Dong, C., Hu, W.: Multi-parameter sensing in a multimode self-interference micro-ring resonator by machine learning. Sensors (Basel) 20(3), 709 (2020)

DOI

87
Zhang, Y., Lu, J., Le, Z., Dong, C.H., Zheng, H., Qin, Y., Yu, P., Hu, W., Zou, C.L., Ren, H.: Proposal of unsupervised gas classification by multimode microresonator. IEEE Photonics J. 13(2), 1–11 (2021)

DOI

Outlines

/