RESEARCH ARTICLE

Photonic generation of ASK microwave signals with SSB format

  • Weilei Gou 1 ,
  • Yuan Yu , 1,2 ,
  • Xinliang Zhang 1,2
Expand
  • 1. Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2. Optics Valley Laboratory, Wuhan 430074, China
yuan_yu@hust.edu.cn

Received date: 06 Mar 2023

Accepted date: 11 Jun 2023

Copyright

2023 The Author(s) 2023

Abstract

Optical beating is the usual approach to generation of microwave signals. However, the highest frequency achievable for microwave signals is limited by the bandwidths of optoelectronic devices. To maximize the microwave frequency with a limited bandwidth of a photodetector (PD) and relieve the bandwidth bottleneck, we propose to generate microwave signals with the single sideband (SSB) format by beating a continuous wave (CW) light with an optical SSB signal. By simply adjusting the frequency difference between the CW light and the carrier of the optical SSB signal, the frequency of the generated microwave SSB signal is changed correspondingly. In the experiment, amplitude shift keying (ASK) microwave signals with the SSB format are successfully generated with different carrier frequencies and coding bit rates, and the recovered coding information agrees well with the original pseudo random binary sequence (PRBS) of 27–1 bits. The proposed approach can significantly relieve the bandwidth restriction set by optoelectronic devices in high-speed microwave communication systems.

Cite this article

Weilei Gou , Yuan Yu , Xinliang Zhang . Photonic generation of ASK microwave signals with SSB format[J]. Frontiers of Optoelectronics, 2023 , 16(3) : 20 . DOI: 10.1007/s12200-023-00075-2

1
Poisel, R.: Introduction to communication electronic warfare systems. Norwood, Chicago (2008)

2
Simon, M.K., Omura, J.K., Scholtz, R.A., Levitt, B.: Spread spectrum communications handbook. New York, USA (1994)

3
Zhu, S., Li, M., Wang, X., Zhu, N.H., Cao, Z.Z., Li, W.: Photonic generation of background-free binary phase-coded microwave pulses. Opt. Lett. 44(1), 94–97 (2019)

DOI

4
Proakis, J.G.: Digital communication. USA (2003)

5
Yao, J.P.: Microwave photonics. J. Lightwave Technol. 27(3), 314–335 (2009)

DOI

6
Li, J., Liang, Y., Wong, K.K.Y.: Millimeter-wave UWB signal generation via frequency up-conversion using fiber optical parametric amplifier. IEEE Photonics Technol. Lett. 21(17), 1172–1174 (2009)

DOI

7
Kuri, T., Omiya, Y., Kawanishi, T., Hara, S., Kitayama, K.I.: Optical transmitter and receiver of 24-GHz ultra-wideband signal by direct photonic conversion techniques. In: Proceedings of International Topical Meeting on Microwave Photonics. Grenoble: IEEE, pp. 1–4 (2006)

DOI

8
Wang, W.T., Li, M., Sun, S.Q., Wang, C., Deng, Y., Zhu, N.H.: Background-free microwave signal generation based on unbalanced temporal pulse shaping. IEEE Photonics Technol. Lett. 28(8), 903–906 (2016)

DOI

9
Li, W., Wang, L.X., Zheng, J.Y., Li, M., Zhu, N.H.: Photonic generation of ultrawideband signals with large carrier frequency tunability based on an optical carrier phase-shifting method. IEEE Photonics J. 5(5), 5502007 (2013)

DOI

10
Li, W., Wang, W.T., Sun, W.H., Liu, J.G., Zhu, N.H.: Generation of FCC-compliant and background-free millimeter-wave ultrawideband signal based on nonlinear polarization rotation in a highly nonlinear fiber. Opt. Express 22(9), 10351–10358 (2014)

DOI

11
Long, Y., Zhou, L., Wang, J.: Photonic-assisted microwave signal multiplication and modulation using a silicon Mach-Zehnder modulator. Sci. Rep. 6(1), 20215 (2016)

DOI

12
Zhu, S., Chen, Z.J., Wang, Y.X., Jin, Y., Zhai, K.P., Bai, Y.P., Tan, J., Wan, P.Y., Liu, X., Li, W., Zhu, N.H.: Single-modulator based multi-format switchable signal generator without background noise. J. Lightwave Technol. 40(20), 6693–6700 (2022)

DOI

13
Zhang, K., Zhao, S.G., Li, X., Lin, T., Jiang, W., Wang, G.D.: Reconfigurable photonic generation of background-free micro-wave waveforms with multi-format. Opt. Commun. 453, 124326 (2019)

DOI

14
Zhu, S., Fan, X., Li, M., Zhu, N.H., Li, W.: Dual-chirp microwave waveform transmitter with elimination of power fading for one-to-multibase station fiber transmission. Opt. Lett. 45(5), 1285–1288 (2020)

DOI

15
Xu, B.R., Sun, J.Z., Sun, W.H., Zhu, N.H.: The amplitude and phase frequency response of the short reach transmissions for DML, EAM, and MZM. In: Proceedings of Opto-Electronics and Communications Conference (OECC 2021). Hong Kong: IEEE, pp. 1–3 (2021)

DOI

16
Jiang, W.J., Xu, L., Liu, Y.F., Chen, Y., Liu, X.L., Yi, J.Q., Yu, Y., Yu, Y., Zhang, X.L.: Optical filter switchable between bandstop and bandpass responses in SOI wafer. IEEE Photonics Technol. Lett. 32(17), 1105–1108 (2020)

DOI

17
Tang, H., Yu, Y., Wang, Z., Xu, L., Zhang, X.: Wideband tunable optoelectronic oscillator based on a microwave photonic filter with an ultra-narrow passband. Opt. Lett. 43(10), 2328–2331 (2018)

DOI

18
Jia, Z.S., Yu, J.J., Hsueh, Y., Chowdhury, A., Chien, H.C., Buck, J.A., Chang, G.K.: Multiband signal generation and dispersion-tolerant transmission based on photonic frequency tripling technology for 60-GHz radio-over-fiber systems. IEEE Photonics Technol. Lett. 20(17), 1470–1472 (2008)

DOI

19
Zhang, Y.S., Yuan, B.C., Li, L.Y., Zeng, J., Shang, Z.J., Zheng, J.L., Lu, Z.Y., Guan, S.J., Zhang, X., Xiao, R.L., Fang, T., Shi, Y.C., Zou, H., Shen, J.P., Chen, X.F.: Experimental demonstration of single sideband modulation utilizing monolithic integrated injection locked DFB laser. J. Lightwave Technol. 38(7), 1809–1816 (2020)

DOI

20
Smith, G.H., Novak, D., Ahmed, Z.: Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators. IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997)

DOI

Outlines

/