RESEARCH ARTICLE

Fabrication and characterization of ZnO/Se1−xTex solar cells

  • Jiajia Zheng 1,2 ,
  • Liuchong Fu 1 ,
  • Yuming He 1 ,
  • Kanghua Li 1 ,
  • Yue Lu 1,2 ,
  • Jiayou Xue 1,2 ,
  • Yuxuan Liu 1 ,
  • Chong Dong 1 ,
  • Chao Chen , 1 ,
  • Jiang Tang 1,2
Expand
  • 1. Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2. China-EU Institute for Clean and Renewable Energy (ICARE), Huazhong University of Science and Technology, Wuhan 430074, China

Received date: 26 Apr 2022

Accepted date: 26 Jun 2022

Published date: 15 Sep 2022

Copyright

2022 The Author(s) 2022

Abstract

Selenium (Se) element is a promising light-harvesting material for solar cells because of the large absorption coefficient and prominent photoconductivity. However, the efficiency of Se solar cells has been stagnated for a long time owing to the suboptimal bandgap (> 1.8 eV) and the lack of a proper electron transport layer. In this work, we tune the bandgap of the absorber to the optimal value of Shockley–Queisser limit (1.36 eV) by alloying 30% Te with 70% Se. Simultaneously, ZnO electron transport layer is selected because of the proper band alignment, and the mild reaction at ZnO/Se0.7Te0.3 interface guarantees a good-quality heterojunction. Finally, a superior efficiency of 1.85% is achieved on ZnO/Se0.7Te0.3 solar cells.

Cite this article

Jiajia Zheng , Liuchong Fu , Yuming He , Kanghua Li , Yue Lu , Jiayou Xue , Yuxuan Liu , Chong Dong , Chao Chen , Jiang Tang . Fabrication and characterization of ZnO/Se1−xTex solar cells[J]. Frontiers of Optoelectronics, 2022 , 15(3) : 36 . DOI: 10.1007/s12200-022-00040-5

1
Fritts, C.E.: On a new form of selenium cell, and some electrical discoveries made by its use. Am. J. Sci. 26(156), 465–472 (1883)

DOI

2
Bhatnagar, A.K., Reddy, K.V., Srivastava, V.: Optical energy gap of amorphous selenium: effect of annealing. J. Appl. Phys. 18(9), 149 (1985)

DOI

3
Tutihasi, S., Chen, I.: Optical properties and band structure of trigonal selenium. Phys. Rev. 158(3), 623–630 (1967)

DOI

4
Dowd, J.J.: Optical properties of selenium. Proc. Phys. Soc. B 64(9), 783–789 (1951)

DOI

5
Hegedus, S.S., Shafarman, W.N.: Thin-film solar cells: device measurements and analysis. Prog. Photovolt. Res. Appl. 12(23), 155–176 (2004)

DOI

6
Rau, U., Werner, J.H.: Radiative efficiency limits of solar cells with lateral band-gap fluctuations. Appl. Phys. Lett. 84(19), 3735–3737 (2004)

DOI

7
Nakamura, M., Yamaguchi, K., Kimoto, Y., Yasaki, Y., Kato, T., Sugimoto, H.: Cd-free Cu(In, Ga)(Se, S)2 thin-film solar cell with record efficiency of 23.35%. IEEE Int. J. Photovolt. 9(6), 1863–1867 (2019)

DOI

8
Yoo, J.J., Seo, G., Chua, M.R., Park, T.G., Lu, Y., Rotermund, F., Kim, Y.K., Moon, C.S., Jeon, N.J., Correa-Baena, J.P., Bulović, V., Shin, S.S., Bawendi, M.G., Seo, J.: Efficient perovskite solar cells via improved carrier management. Nature 590(7847), 587–593 (2021)

DOI

9
Yang, G., Zhang, H., Li, S., Ren, Z., Fang, G., Lei, D., Li, G.: Enhanced efficiency and stability of triple-cation perovskite solar cells with CsPbIxBr3–x QDs „surface patches”. SmartMat 3(3), 513–521 (2022)

DOI

10
Liu, Y., Dong, B., Hagfeldt, A., Luo, J., Graetzel, M.: Chemically tailored molecular surface modifiers for efficient and stable perovskite photovoltaics. SmartMat 2(1), 33–37 (2021)

DOI

11
Romeo, A., Artegiani, E.: CdTe-based thin film solar cells: past, present and future. Energies 14(6), 1684 (2021)

DOI

12
Brooks, L.S.: The vapor pressures of tellurium and selenium. J. Am. Chem. Soc. 74(1), 227–229 (1952)

DOI

13
Ito, H., Oka, M., Ogino, T., Takeda, A., Mizushima, Y.: Selenium thin-film solar cell. Jpn. J. Appl. Phys. 23(Part 1, No. 6), 719–725 (1984)

DOI

14
Nakada, T., Kunioka, A.: Efficient ITO/Se heterojunction solar cells. Jpn. J. Appl. Phys. 23(Part 2, No. 8), 587 (1984)

DOI

15
Nakada, T., Kunioka, A.: Polycrystalline thin-film TiO2/Se solar cells. Jpn. J. Appl. Phys. 24(Part 2, No. 7), 536 (1985)

DOI

16
Nguyen, D.C., Tanaka, S., Nishino, H., Manabe, K., Ito, S.: 3-D solar cells by electrochemical-deposited Se layer as extremely-thin absorber and hole conducting layer on nanocrystalline TiO2 electrode. Nanoscale Res. Lett. 8(1), 8 (2013)

DOI

17
Todorov, T.K., Singh, S., Bishop, D.M., Gunawan, O., Lee, Y.S., Gershon, T.S., Brew, K.W., Antunez, P.D., Haight, R.: Ultrathin high band gap solar cells with improved efficiencies from the world’s oldest photovoltaic material. Nat. Commun. 8(1), 682 (2017)

DOI

18
Tennakone, K., Kumara, G., Kottegoda, I., Perera, V., Aponsu, G.: Nanoporous n-/selenium/p-CuCNS photovoltaic cell. J. Phys. D Appl. Phys. 31(18), 2326–2330 (1998)

DOI

19
Wang, K., Shi, Y., Zhang, H., Xing, Y., Dong, Q., Ma, T.: Selenium as a photoabsorber for inorganic-organic hybrid solar cells. Phys. Chem. Chem. Phys. 16(42), 23316–23319 (2014)

DOI

20
Zhu, M., Hao, F., Ma, L., Song, T.B., Miller, C.E., Wasielewski, C.E., Li, X., Kanatzidis, M.G.: Solution-processed air-stable mesoscopic selenium solar cells. ACS Energy Lett. 1(2), 469–473 (2016)

DOI

21
Green, M.A.: The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog. Photovolt. Res. Appl. 17(3), 183–189 (2009)

DOI

22
Green, M.A., Blakers, A.W., Shi, J., Keller, E.M., Wenham, S.R.: 19.1% efficient silicon solar cell. Appl. Phys. Lett. 44(12), 1163–1164 (1984)

DOI

23
Anzin, V.B., Eremets, M.I., Kosichkin, Y.V., Nadezhdinskii, A.I., Shirokov, A.M.: Measurement of the energy gap in tellurium under pressure. Phys. Status Solidi A Appl. Res. 42(1), 385–390 (1977)

DOI

24
Asendorf, R.: Space group of tellurium and selenium. J. Chem. Phys. 27(1), 11–16 (1957)

DOI

25
Yang, P., Zha, J., Gao, G., Zheng, L., Huang, H., Xia, Y., Xu, S., Xiong, T., Zhang, Z., Yang, Z.: Growth of tellurium nanobelts on h-BN for p-type transistors with ultrahigh hole mobility. Nano-Micro Lett. 14(1), 1–12 (2022)

DOI

26
Lin, Z., Wang, C., Chai, Y.: Emerging group-VI elemental 2D materials: preparations, properties, and device applications. Small 16(41), 2003319 (2020)

DOI

27
Jiang, J., Meng, F., Cheng, Q., Wang, A., Chen, Y., Qiao, J., Pang, J., Xu, W., Ji, H., Zhang, Y., Zhang, Q., Wang, S., Feng, X., Gu, L., Liu, H., Han, L.: Low lattice mismatch InSe–Se vertical Van der Waals heterostructure for high-performance transistors via strong Fermi-level depinning. Small Methods 4(8), 2000238 (2020)

DOI

28
Zhang, S., Pang, J., Cheng, Q., Yang, F., Chen, Y., Liu, Y., Li, Y., Gemming, T., Liu, X., Ibarlucea, B., Yang, J., Liu, H., Zhou, W., Cuniberti, G., Rümmeli, M.H.: High-performance electronics and optoelectronics of monolayer tungsten diselenide full film from pre-seeding strategy. InfoMat 3(12), 1455–1469 (2021)

DOI

29
Wang, Y., Pang, J., Cheng, Q., Han, L., Li, Y., Meng, X., Ibarlucea, B., Zhao, H., Yang, F., Liu, H.: Applications of 2D-layered palladium diselenide and its van der Waals heterostructures in electronics and optoelectronics. Nano-Micro Lett. 13(1), 1–52 (2021)

DOI

30
Hadar, I., Hu, X., Luo, Z., Dravid, V.P., Kanatzidis, M.G.: Nonlinear band gap tunability in selenium–tellurium alloys and its utilization in solar cells. ACS Energy Lett. 4(9), 2137–2143 (2019)

DOI

31
Tan, C., Amani, M., Zhao, C., Hettick, M., Song, X., Lien, D.H., Li, H., Yeh, M., Shrestha, V.R., Crozier, K.B., Scott, M.C., Javey, A.: Evaporated SexTe1−x thin films with tunable bandgaps for short-wave infrared photodetectors. Adv. Mater. 32(38), 2001329 (2020)

DOI

32
Cui, S., Chahal, R., Boussard-Plédel, C., Nazabal, V., Doualan, J.L., Troles, J., Lucas, J., Bureau, B.: From selenium- to telluriumbased glass optical fibers for infrared spectroscopies. Molecules 18(5), 5373–5388 (2013)

DOI

33
Jayah, N.A., Yahaya, H., Mahmood, M.R., Terasako, T., Yasui, K., Hashim, A.M.: High electron mobility and low carrier concentration of hydrothermally grown ZnO thin films on seeded a-plane sapphire at low temperature. Nanoscale Res. Lett. 10(1), 7 (2015)

DOI

34
Ting, H., Ni, L., Ma, S., Ma, Y., Xiao, L., Chen, Z.: Progress in electron-transport materials in application of perovskite solar cells. Acta Phys. Sin. 64(3), 038802 (2015)

DOI

35
Jauncey, G.E.M.: The scattering of X-rays and Bragg’s law. Proc. Natl. Acad. Sci. U.S.A. 10(2), 57–60 (1924)

DOI

36
Tauc, J.: Absorption edge and internal electric fields in amorphous semiconductors. Mater. Res. Bull. 5(8), 721–729 (1970)

DOI

37
Denton, A.R., Ashcroft, N.W.: Vegard’s law. Phys. Rev. A 43(6), 3161–3164 (1991)

DOI

38
Carson, E.M., Watson, J.R.: Undergraduate students’ understandings of entropy and Gibbs free energy. U. Chem. Ed. 6, 4–12 (2002)

39
Dean, J.A.: Lange’s Handbook of Chemistry. McGraw-Hill, New York (1999)

40
Olin, A., Olang, B.N., Osadchii, E.G., Ohman, L.O., Rosen, E.: Chemical Thermodynamics of Selenium, OECD Nuclear Energy Agency, France (2005)

41
Scheer, R., Schock, H.W.: Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices. Wiley-VCH, Baden-Württemberg, Germany (2011)

DOI

42
Parr, R.G.: Density functional theory. Annu. Rev. Phys. Chem. 34(1), 631–656 (1983)

DOI

43
Li, M., Chen, S., Zhao, X., Xiong, K., Wang, B., Shah, U.A., Gao, L., Lan, X.Z., Zhang, J.B., Hsu, H.Y., Tang, J., Song, H.: Matching charge extraction contact for infrared PbS colloidal quantum dot solar cells. Small 18(1), 2105495 (2022)

DOI

44
Chen, W., Zhang, N., Zhang, M.Y., Zhang, X.T., Gao, H., Wen, J.: Controllable growth of ZnO–ZnSe heterostructures for visiblelight photocatalysis. CrystEngComm 16(6), 1201–1206 (2014)

DOI

45
Gokmen, T., Gunawan, O., Mitzi, D.B.: Minority carrier diffusion length extraction in Cu2ZnSn(Se, S)4 solar cells. J. Appl. Phys. 114(11), 114511 (2013)

DOI

46
Sites, J.R., Mauk, P.H.: Diode quality factor determination for thin-film solar cells. Solar cells 27(1), 411-417 (1989)

DOI

47
Sites, J.R.: Quantification of losses in thin-film polycrystalline solar cells. Sol. Energy Mater. Sol. Cells 75(1–2), 243–251 (2003)

DOI

48
Liu, Y., Wu, W., Goddard, W.A., 3rd.: Tellurium: fast electrical and atomic transport along the weak interaction direction. J. Am. Chem. Soc. 140(2), 550–553 (2018)

DOI

49
Cao, Y., Zhu, X., Tong, X., Zhou, J., Ni, J., Zhang, J., Pang, J.: Ultrathin microcrystalline hydrogenated Si/Ge alloyed tandem solar cells towards full solar spectrum conversion. Front. Chem. Sci. Eng. 14(6), 997–1005 (2020)

DOI

50
Liao, W., Zhao, D., Yu, Y., Grice, C.R., Wang, C., Cimaroli, A.J., Schulz, P., Meng, W., Zhu, K., Xiong, R.G., Yan, Y.: Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22. Adv. Mater. 28(42), 9333–9340 (2016)

DOI

51
Shockley, W., Queisser, H.: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32(3), 510–519 (1961)

DOI

52
Abou-Ras, D., Kirchartz, T., Rau, U.: Advanced Characterization Techniques for Thin Film Solar Cells. Wiley-VCH, Germany (2016)

DOI

53
Proskuryakov, Y.Y., Durose, K., Taele, B.M., Welch, G.P., Oelting, S.: Admittance spectroscopy of CdTe∕CdS solar cells subjected to varied nitric-phosphoric etching conditions. J. Appl. Phys. 101(1), 014505 (2007)

DOI

54
Seto, J.Y.W.: The electrical properties of polycrystalline silicon films. J. Appl. Phys. 46(12), 5247–5254 (1975)

DOI

55
Walter, T., Herberholz, R., Müller, C., Schock, H.W.: Determination of defect distributions from admittance measurements and application to Cu(In, Ga)Se2 based heterojunctions. J. Appl. Phys. 80(8), 4411–4420 (1996)

DOI

56
McCandless, B.E., Buchanan, W.A., Thompson, C.P., Sriramagiri, G., Lovelett, R.J., Duenow, J., Albin, D., Jensen, S., Colegrove, E., Moseley, J., Moutinho, H., Harvey, S., Al-Jassim, M., Metzger, W.K.: Overcoming carrier concentration limits in polycrystalline CdTe thin films with in situ doping. Sci. Rep. 8(1), 14519 (2018)

DOI

Outlines

/