MINI REVIEW

Quantum prospects for hybrid thin-film lithium niobate on silicon photonics

  • Jeremy C. Adcock ,
  • Yunhong Ding
Expand
  • Center for Silicon Photonics for Optical Communication, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark

Received date: 02 Jul 2021

Accepted date: 16 Aug 2021

Published date: 15 Mar 2022

Copyright

2022 The Author(s) 2022

Abstract

Photonics is poised to play a unique role in quantum technology for computation, communications and sensing. Meanwhile, integrated photonic circuits—with their intrinsic phase stability and high-performance, nanoscale components—offer a route to scaling. However, each integrated platform has a unique set of advantages and pitfalls, which can limit their power. So far, the most advanced demonstrations of quantum photonic circuitry has been in silicon photonics. However, thin-film lithium niobate (TFLN) is emerging as a powerful platform with unique capabilities; advances in fabrication have yielded loss metrics competitive with any integrated photonics platform, while its large second-order nonlinearity provides efficient nonlinear processing and ultra-fast modulation. In this short review, we explore the prospects of dynamic quantum circuits—such as multiplexed photon sources and entanglement generation—on hybrid TFLN on silicon (TFLN/Si) photonics and argue that hybrid TFLN/Si photonics may have the capability to deliver the photonic quantum technology of tomorrow.

Cite this article

Jeremy C. Adcock , Yunhong Ding . Quantum prospects for hybrid thin-film lithium niobate on silicon photonics[J]. Frontiers of Optoelectronics, 2022 , 15(1) : 7 . DOI: 10.1007/s12200-022-00006-7

1
Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)

DOI

2
Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao, F.G.S.L., Buell, D.A., Burkett, B., Chen, Y., Chen, Z., Chiaro, B., Collins, R., Courtney, W., Dunsworth, A., Farhi, E., Foxen, B., Fowler, A., Gidney, C., Giustina, M., Graff, R., Guerin, K., Habegger, S., Harrigan, M.P., Hartmann, M.J., Ho, A., Hoffmann, M., Huang, T., Humble, T.S., Isakov, S.V., Jeffrey, E., Jiang, Z., Kafri, D., Kechedzhi, K., Kelly, J., Klimov, P.V., Knysh, S., Korotkov, A., Kostritsa, F., Landhuis, D., Lindmark, M., Lucero, E., Lyakh, D., Mandrà, S., McClean, J.R., McEwen, M., Megrant, A., Mi, X., Michielsen, K., Mohseni, M., Mutus, J., Naaman, O., Neeley, M., Neill, C., Niu, M.Y., Ostby, E., Petukhov, A., Platt, J.C., Quintana, C., Rieffel, E.G., Roushan, P., Rubin, N.C., Sank, D., Satzinger, K.J., Smelyanskiy, V., Sung, K.J., Trevithick, M.D., Vainsencher, A., Villalonga, B., White, T., Yao, Z.J., Yeh, P., Zalcman, A., Neven, H., Martinis, J.M.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019)

DOI

3
Zhong, H.S., Deng, Y.H., Qin, J., Wang, H., Chen, M.C., Peng, L.C., Luo, Y.H., Wu, D., Gong, S.Q., Su, H., Hu, Y.: Phase-programmable gaussian boson sampling using stimulated squeezed light. arxiv preprint arxiv: 2106. 15534 (2021)

DOI

4
Wu, Y.L., Bao, W.S., Cao, S.R., Chen, F.S., Chen, M.C., Chen, X.W., Chung, T.S., Deng, H., Du, Y.J., Fan, D.J., Gong, M., Guo, C., Guo, C., Guo, S.J., Han, L.C., Hong, L.Y., Huang, H.L., Huo, Y.H., Li, L.P., Li, N., Li, S.W., Li, Y., Liang, F.T., Lin, C., Lin, J., Qian, H.R., Qiao, D., Rong, H., Su, H., Sun, L.H., Wang, L.Y., Wang, S.Y., Wu, D.C., Xu, Y., Yan, K., Yang, W.F., Yang, Y., Ye, Y.S., Yin, J.H., Ying, C., Yu, J.L., Zha, C., Zhang, C., Zhang, H.B., Zhang, K.L., Zhang, Y.M., Zhao, H., Zhao, Y.W., Zhou, L., Zhu, Q.L., Lu, C.Y., Peng, C.Z., Zhu, X.B., Pan, J.W.: Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett. 127(18), 180501 (2021)

DOI

5
Liao, S.K., Cai, W.Q., Liu, W.Y., Zhang, L., Li, Y., Ren, J.G., Yin, J., Shen, Q., Cao, Y., Li, Z.P., Li, F.Z., Chen, X.W., Sun, L.H., Jia, J.J., Wu, J.C., Jiang, X.J., Wang, J.F., Huang, Y.M., Wang, Q., Zhou, Y.L., Deng, L., Xi, T., Ma, L., Hu, T., Zhang, Q., Chen, Y.A., Liu, N.L., Wang, X.B., Zhu, Z.C., Lu, C.Y., Shu, R., Peng, C.Z., Wang, J.Y., Pan, J.W.: Satellite-to-ground quantum key distribution. Nature 549(7670), 43–47 (2017)

DOI

6
Ren, J.G., Xu, P., Yong, H.L., Zhang, L., Liao, S.K., Yin, J., Liu, W.Y., Cai, W.Q., Yang, M., Li, L., Yang, K.X., Han, X., Yao, Y.Q., Li, J., Wu, H.Y., Wan, S., Liu, L., Liu, D.Q., Kuang, Y.W., He, Z.P., Shang, P., Guo, C., Zheng, R.H., Tian, K., Zhu, Z.C., Liu, N.L., Lu, C.Y., Shu, R., Chen, Y.A., Peng, C.Z., Wang, J.Y., Pan, J.W.: Ground-to-satellite quantum teleportation. Nature 549(7670), 70–73 (2017)

DOI

7
Giustina, M., Versteegh, M.A.M., Wengerowsky, S., Handsteiner, J., Hochrainer, A., Phelan, K., Steinlechner, F., Kofler, J., Larsson, J., Abellán, C., Amaya, W., Pruneri, V., Mitchell, M.W., Beyer, J., Gerrits, T., Lita, A.E., Shalm, L.K., Nam, S.W., Scheidl, T., Ursin, R., Wittmann, B., Zeilinger, A.: Significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115(25), 250401 (2015)

DOI

8
Hensen, B., Bernien, H., Dréau, A.E., Reiserer, A., Kalb, N., Blok, M.S., Ruitenberg, J., Vermeulen, R.F., Schouten, R.N., Abellán, C., Amaya, W., Pruneri, V., Mitchell, M.W., Markham, M., Twitchen, D.J., Elkouss, D., Wehner, S., Taminiau, T.H., Hanson, R.: Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526(7575), 682–686 (2015)

DOI

9
Shalm, L.K., Meyer-Scott, E., Christensen, B.G., Bierhorst, P., Wayne, M.A., Stevens, M.J., Gerrits, T., Glancy, S., Hamel, D.R., Allman, M.S., Coakley, K.J., Dyer, S.D., Hodge, C., Lita, A.E., Verma, V.B., Lambrocco, C., Tortorici, E., Migdall, A.L., Zhang, Y., Kumor, D.R., Farr, W.H., Marsili, F., Shaw, M.D., Stern, J.A., Abellán, C., Amaya, W., Pruneri, V., Jennewein, T., Mitchell, M.W., Kwiat, P.G., Bienfang, J.C., Mirin, R.P., Knill, E., Nam, S.W.: Strong loophole-free test of local realism. Phys. Rev. Lett. 115(25), 250402 (2015)

DOI

10
Bromley, T.R., Arrazola, J.M., Jahangiri, S., Izaac, J., Quesada, N., Gran, A.D., Schuld, M., Swinarton, J., Zabaneh, Z., Killoran, N.: Applications of near-term photonic quantum computers: software and algorithms. Quan. Sci. Technol. 5(3), 034010 (2020)

DOI

11
Wang, J., Sciarrino, F., Laing, A., Thompson, M.G.: Integrated photonic quantum technologies. Nat. Photon. 14(5), 273–284 (2020)

DOI

12
Silverstone, J.W., Wang, J., Bonneau, D., Sibson, P., Santagati, R., Erven, C., O'Brien, J.L., Thompson, M.G.: Silicon quantum photonics. In: Proceedings of International Conference on Optical MEMS and Nanophotonics (OMN). Singapore: IEEE (2016)

DOI

13
Adcock, J.C., Bao, J., Chi, Y., Chen, X., Bacco, D., Gong, Q., Oxenlowe, L.K., Wang, J., Ding, Y.: Advances in silicon quantum photonics. IEEE J. Sel. Top. Quantum Electron. 27(2), 1–24 (2021)

DOI

14
Sibson, P., Kennard, J.E., Stanisic, S., Erven, C., O’Brien, J.L., Thompson, M.G.: Integrated silicon photonics for high-speed quantum key distribution. Optica 4(2), 172–177 (2017)

DOI

15
Llewellyn, D., Ding, Y., Faruque, I.I., Paesani, S., Bacco, D., Santagati, R., Qian, Y.J., Li, Y., Xiao, Y.F., Huber, M., Malik, M., Sinclair, G.F., Zhou, X., Rottwitt, K., O’Brien, J.L., Rarity, J.G., Gong, Q., Oxenlowe, L.K., Wang, J., Thompson, M.G.: Chip-to-chip quantum teleportation and multi-photon entanglement in silicon. Nat. Phys. 16(2), 148–153 (2020)

DOI

16
Vigliar, C., Paesani, S., Ding, Y.H., Adcock, J.C., Wang, J.W., Morley-Short, S., Bacco, D., Oxenløwe, L.K., Thompson, M.G., Rarity, J.G., Laing, A.: Error protected qubits in a silicon photonic chip. Nat. Phys. 17(10), 1137–1143 (2020)

DOI

17
Paesani, S., Ding, Y., Santagati, R., Chakhmakhchyan, L., Vigliar, C., Rottwitt, K., Oxenløwe, L.K., Wang, J., Thompson, M.G., Laing, A.: Generation and sampling of quantum states of light in a silicon chip. Nat. Phys. 15(9), 925–929 (2019)

DOI

18
Ono, T., Sinclair, G.F., Bonneau, D., Thompson, M.G., Matthews, J.C.F., Rarity, J.G.: Observation of nonlinear interference on a silicon photonic chip. Opt. Lett. 44(5), 1277–1280 (2019)

DOI

19
Rudolph, T.: Why I am optimistic about the silicon-photonic route to quantum computing. APL Photon. 2(3), 030901 (2017)

DOI

20
Levy, M., Osgood, R.M., Liu, R., Cross, L.E., Cargill, G.S.I.I.I., Kumar, A., Bakhru, H.: Fabrication of single-crystal lithium niobate films by crystal ion slicing. Appl. Phys. Lett. 73(16), 2293– 2295 (1998)

DOI

21
Rabiei, P., Ma, J., Khan, S., Chiles, J., Fathpour, S.: Heterogeneous lithium niobate photonics on silicon substrates. Opt. Express 21(21), 25573–25581 (2013)

DOI

22
Poberaj, G., Hu, H., Sohler, W., Günter, P.: Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photonics Rev. 6(4), 488–503 (2012)

DOI

23
Bazzan, M., Sada, C.: Optical waveguides in lithium niobate: recent developments and applications. Appl. Phys. Rev. 2(4), 040603 (2015)

DOI

24
Weigel, P.O., Zhao, J., Fang, K., Al-Rubaye, H., Trotter, D., Hood, D., Mudrick, J., Dallo, C., Pomerene, A.T., Starbuck, A.L., DeRose, C.T., Lentine, A.L., Rebeiz, G., Mookherjea, S.: Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth. Opt. Express 26(18), 23728–23739 (2018)

DOI

25
Sakashita, Y., Segawa, H.: Preparation and characterization of LiNbO3 thin films produced by chemical-vapor deposition. J. Appl. Phys. 77(11), 5995–5999 (1995)

DOI

26
Nakata, Y., Gunji, S., Okada, T., Maeda, M.: Fabrication of LiNbO3 thin films by pulsed laser deposition and investigation of nonlinear properties. Appl. Phys. A 79(4–6), 1279–1282 (2004)

DOI

27
Gitmans, F., Sitar, Z., Günter, P.: Growth of tantalum oxide and lithium tantalate thin films by molecular beam epitaxy. Vacuum 46(8–10), 939–942 (1995)

DOI

28
Lansiaux, X., Dogheche, E., Remiens, D., Guilloux-viry, M., Perrin, A., Ruterana, P.: LiNbO3 thick films grown on sapphire by using a multistep sputtering process. J. Appl. Phys. 90(10), 5274–5277 (2001)

DOI

29
Bruel, M.: Silicon on insulator material technology. Electron. Lett. 31(14), 1201–1202 (1995)

DOI

30
Mercante, A.J., Yao, P., Shi, S., Schneider, G., Murakowski, J., Prather, D.W.: 110 GHz CMOS compatible thin film LiNbO3 modulator on silicon. Opt. Express 24(14), 15590–15595 (2016)

DOI

31
Wang, C., Zhang, M., Chen, X., Bertrand, M., Shams-Ansari, A., Chandrasekhar, S., Winzer, P., Lončar, M.: Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562(7725), 101–104 (2018)

DOI

32
Wang, C., Zhang, M., Stern, B., Lipson, M., Lončar, M.: Nanophotonic lithium niobate electro-optic modulators. Opt. Express 26(2), 1547–1555 (2018)

DOI

33
He, M., Xu, M., Ren, Y., Jian, J., Ruan, Z., Xu, Y., Gao, S., Sun, S., Wen, X., Zhou, L., Liu, L., Guo, C., Chen, H., Yu, S., Liu, L., Cai, X.: High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photonics 13(5), 359–364 (2019)

DOI

34
Zhang, M., Wang, C., Cheng, R., Shams-Ansari, A., Lončar, M.: Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4(12), 1536–1537 (2017)

DOI

35
Zhang, M., Wang, C., Hu, Y., Shams-Ansari, A., Ren, T., Fan, S., Lončar, M.: Electronically programmable photonic molecule. Nat. Photonics 13(1), 36–40 (2019)

DOI

36
Wang, C., Zhang, M., Yu, M., Zhu, R., Hu, H., Loncar, M.: Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun. 10(1), 978 (2019)

DOI

37
Xu, M., He, M., Zhang, H., Jian, J., Pan, Y., Liu, X., Chen, L., Meng, X., Chen, H., Li, Z., Xiao, X., Yu, S., Yu, S., Cai, X.: High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun. 11(1), 3911 (2020)

DOI

38
Pohl, D., Reig Escalé, M., Madi, M., Kaufmann, F., Brotzer, P., Sergeyev, A., Guldimann, B., Giaccari, P., Alberti, E., Meier, U., Grange, R.: An integrated broadband spectrometer on thin-film lithium niobate. Nat. Photonics 14(1), 24–29 (2020)

DOI

39
Sun, D., Zhang, Y., Wang, D., Song, W., Liu, X., Pang, J., Geng, D., Sang, Y., Liu, H.: Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications. Light Sci. Appl. 9(1), 197 (2020)

DOI

40
Li, H., Ma, B.: Research development on fabrication and optical properties of nonlinear photonic crystals. Front. Optoelectron. 13(1), 35–49 (2020)

DOI

41
Chen, F.: Laser-written three dimensional nonlinear photonic crystals. Front. Optoelectron. 12(4), 342–343 (2019)

DOI

42
Lu, J., Surya, J.B., Liu, X., Bruch, A.W., Gong, Z., Xu, Y., Tang, H.X.: Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250000%/W. Optica 6(12), 1455–1460 (2019)

DOI

43
Liu, X., Ying, P., Zhong, X., Xu, J., Han, Y., Yu, S., Cai, X.: Highly efficient thermo-optic tunable micro-ring resonator based on an LNOI platform. Opt. Lett. 45(22), 6318–6321 (2020)

DOI

44
Thomson, D., Zilkie, A., Bowers, J.E., Komljenovic, T., Reed, G.T., Vivien, L., Marris-Morini, D., Cassan, E., Virot, L., Fédéli, J.M., Hartmann, J.M., Schmid, J.H., Xu, D.X., Boeuf, F., O’Brien, P., Mashanovich, G.Z., Nedeljkovic, M.: Roadmap on silicon photonics. J. Opt. 18(7), 073003 (2016)

DOI

45
Treyz, G.V., May, P.G., Halbout, J.M.: Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect. Appl. Phys. Lett. 59(7), 771–773 (1991)

DOI

46
Liu, A., Liao, L., Rubin, D., Nguyen, H., Ciftcioglu, B., Chetrit, Y., Izhaky, N., Paniccia, M.: High-speed optical modulation based on carrier depletion in a silicon waveguide. Opt. Express 15(2), 660–668 (2007)

DOI

47
Ding, Y., Peucheret, C., Ou, H., Yvind, K.: Fully etched apodized grating coupler on the SOI platform with −0.58 dB coupling efficiency. Opt. Lett. 39(18), 5348–5350 (2014)

DOI

48
Notaros, J., Pavanello, F., Wade, M. T., Gentry, C. M., Atabaki, A., Alloatti, L., Ram, R. J., Miloš, A. P. Ultra-efficient CMOS fiber-to-chip grating couplers. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC). Anaheim: IEEE (2016)

DOI

49
Hoppe, N., Zaoui, W.S., Rathgeber, L., Wang, Y., Klenk, R.H., Vogel, W., Kaschel, M., Portalupi, S.L., Burghartz, J., Berroth, M.: Ultra-efficient silicon-on-insulator grating couplers with backside metal mirrors. IEEE J. Sel. Top. Quantum Electron. 26(2), 1–6 (2020)

DOI

50
Horikawa, T., Shimura, D., Mogami, T.: Low-loss silicon wire waveguides for optical integrated circuits. MRS Commun. 6(1), 9–15 (2016)

DOI

51
Biberman, A., Shaw, M.J., Timurdogan, E., Wright, J.B., Watts, M.R.: Ultralow-loss silicon ring resonators. Opt. Lett. 37(20), 4236–4238 (2012)

DOI

52
Liu, Y., Wu, C., Gu, X., Kong, Y., Yu, X., Ge, R., Cai, X., Qiang, X., Wu, J., Yang, X., Xu, P.: High-spectral-purity photon generation from a dual-interferometer-coupled silicon microring. Opt. Lett. 45(1), 73–76 (2020)

DOI

53
Paesani, S., Borghi, M., Signorini, S., Maïnos, A., Pavesi, L., Laing, A.: Near-ideal spontaneous photon sources in silicon quantum photonics. Nat. Commun. 11(1), 2505 (2020)

DOI

54
Christensen, J.B., Koefoed, J.G., Rottwitt, K., McKinstrie, C.: Engineering spectrally unentangled photon pairs from nonlinear microring resonators through pump manipulation. arxiv preprint arxiv: 1711. 02401 (2017)

DOI

55
Vernon, Z., Menotti, M., Tison, C.C., Steidle, J.A., Fanto, M.L., Thomas, P.M., Preble, S.F., Smith, A.M., Alsing, P.M., Liscidini, M., Sipe, J.E.: Truly unentangled photon pairs without spectral filtering. Opt. Lett. 42(18), 3638–3641 (2017)

DOI

56
Zhu, H., Li, Q., Han, H., Li, Z., Zhang, X., Zhang, H., Hu, H.: Hybrid mono-crystalline silicon and lithium niobate thin films. Chin. Opt. Lett. 19, 060017 (2021)

DOI

57
Weigel, P.O., Savanier, M., DeRose, C.T., Pomerene, A.T., Starbuck, A.L., Lentine, A.L., Stenger, V., Mookherjea, S.: Lightwave circuits in lithium niobate through hybrid waveguides with silicon photonics. Sci. Rep. 6(1), 22301 (2016)

DOI

58
Krasnokutska, I., Chapman, R.J., Tambasco, J.J., Peruzzo, A.: High coupling efficiency grating couplers on lithium niobate on insulator. Opt. Express 27(13), 17681–17685 (2019)

DOI

59
Chen, B., Ruan, Z., Hu, J., Wang, J., Lu, C., Lau, A.P.T., Guo, C., Chen, K., Chen, P., Liu, L.: Two-dimensional grating coupler on an X-cut lithium niobate thin-film. Opt. Express 29(2), 1289–1295 (2021)

DOI

60
Ruan, Z., Hu, J., Xue, Y., Liu, J., Chen, B., Wang, J., Chen, K., Chen, P., Liu, L.: Metal based grating coupler on a thin-film lithium niobate waveguide. Opt. Express 28(24), 35615–35621 (2020)

DOI

61
Bowers, J. E., Liu, A. Y. A comparison of four approaches to photonic integration. In: Proceedings of Optical Fiber Communication Conference. Los Angeles: IEEE (2017)

DOI

62
Ogiso, Y., Ozaki, J., Ueda, Y., Kashio, N., Kikuchi, N., Yamada, E., Tanobe, H., Kanazawa, S., Yamazaki, H., Ohiso, Y., Fujii, T., Kohtoku, M.: Over 67 GHz bandwidth and 15 V Vπ InP-based optical IQ modulator with nipn heterostructure. J. Lightwave Technol. 35(8), 1450–1455 (2017)

DOI

63
Ottaviano, L., Pu, M., Semenova, E., Yvind, K.: Low-loss high-confinement waveguides and microring resonators in AlGaAs-on-insulator. Opt. Lett. 41(17), 3996–3999 (2016)

DOI

64
Burla, M., Hoessbacher, C., Heni, W., Haffner, C., Fedoryshyn, Y., Werner, D., Watanabe, T., Massler, H., Elder, D., Dalton, L., Leuthold, J.: 500 GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics. APL Photon. 4(5), 056106 (2019)

DOI

65
Zhong, C., Li, J., Lin, H.: Graphene-based all-optical modulators. Front. Optoelectron. 13(2), 114–128 (2020)

DOI

66
Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409(6816), 46–52 (2001)

DOI

67
Bartolucci, S., Birchall, P., Bombin, H., Cable, H., Dawson, C., Gimeno-Segovia, M., Johnston, E., Kieling, K., Nickerson, N., Pant, M., Pastawski, F., Rudolph, T., Sparrow, C.: Fusion-based quantum computation. arxiv preprint arxiv: 2101. 09310 (2021)

68
Takeda, S., Furusawa, A.: Toward large-scale fault-tolerant universal photonic quantum computing. APL Photon. 4(6), 060902 (2019)

DOI

69
Bourassa, J.E., Alexander, R.N., Vasmer, M., Patil, A., Tzitrin, I., Matsuura, T., Su, D., Baragiola, B.Q., Guha, S., Dauphinais, G., Sabapathy, K.K., Menicucci, N.C., Dhand, I.: Blueprint for a scalable photonic fault-tolerant quantum computer. Quantum 5, 392 (2021)

DOI

70
Azuma, K., Tamaki, K., Lo, H.K.: All-photonic quantum repeaters. Nat. Commun. 6(1), 6787 (2015)

DOI

71
Adcock, J.C., Morley-Short, S., Silverstone, J.W., Thompson, M.G.: Hard limits on the postselectability of optical graph states. Quan. Sci. Technol. 4, 015010 (2018)

DOI

72
Migdall, A.L., Branning, D., Castelletto, S.: Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source. Phys. Rev. A 66(5), 053805 (2002)

DOI

73
Pittman, T.B., Jacobs, B.C., Franson, P.: Single photons on pseudodemand from stored parametric down-conversion. Phys. Rev. A 66(4), 042303 (2002)

DOI

74
Bonneau, D., Mendoza, G.J., O’Brien, J.L., Thompson, M.G.: Effect of loss on multiplexed single-photon sources. New J. Phys. 17(4), 043057 (2015)

DOI

75
Fumihiro, K., Kwiat, P.: High-efficiency single-photon generation via large-scale active time multiplexing. Sci. Adv. 5(10), eaaw8586 (2019)

DOI

76
Collins, M.J., Xiong, C., Rey, I.H., Vo, T.D., He, J., Shahnia, S., Reardon, C., Krauss, T.F., Steel, M.J., Clark, A.S., Eggleton, B.J.: Integrated spatial multiplexing of heralded single-photon sources. Nat. Commun. 4(1), 2582 (2013)

DOI

77
Joshi, C., Farsi, A., Clemmen, S., Ramelow, S., Gaeta, A.L.: Frequency multiplexing for quasi-deterministic heralded singlephoton sources. Nat. Commun. 9(1), 847 (2018)

DOI

78
Thomas, S., Billard, M., Coste, N., Wein, S., Ollivier, P., Krebs, O., Tazaïrt, L., Harouri, A., Lemaitre, A., Sagnes, I., Anton, C., Lanco, L., Somaschi, N., Loredo, J., Senellart, P.: Bright polarized single-photon source based on a linear dipole. Phys. Rev. Lett. 126(23), 233601 (2021)

DOI

79
Tomm, N., Javadi, A., Antoniadis, N.O., Najer, D., Löbl, M.C., Korsch, A.R., Schott, R., Valentin, S.R., Wieck, A.D., Ludwig, A., Warburton, R.J.: A bright and fast source of coherent single photons. Nat. Nanotechnol. 16(4), 399–403 (2021)

DOI

80
Bartolucci, S., Birchall, P., Gimeno-Segovia, M., Johnston, E., Kieling, K., Mihir Pant, M., Rudolph, T., Smith, J., Sparrow, C., Vidrighin, M.: Creation of entangled photonic states using linear optics. arxiv preprint arxiv: 2106. 13825 (2021)

81
Paesani, S., Bulmer, J., Jones, A., Santagati, R., Laing, A.: Scheme for universal high-dimensional quantum computation with linear optics. Phys. Rev. Lett. 126(23), 230504 (2021)

DOI

82
Zhang, X., Bell, B., Pelusi, M., He, J., Geng, W., Kong, Y., Zhang, P., Xiong, C., Eggleton, B.J.: High repetition rate correlated photon pair generation in integrated silicon nanowires. Appl. Opt. 56(30), 8420–8424 (2017)

DOI

83
Münzberg, J., Vetter, A., Beutel, F., Hartmann, W., Ferrari, S., Pernice, W.H.P., Rockstuhl, C.: Superconducting nanowire single- photon detector implemented in a 2D photonic crystal cavity. Optica 5(5), 658–665 (2018)

DOI

84
Tasker J F, Frazer J, Ferranti G, Allen F, Brunel L, Tanzilli S, D’Auria V, Matthews J. 9~GHz measurement of squeezed light by interfacing silicon photonics and integrated electronics. arxiv preprint arxiv: 2009. 14318 (2020)

85
Eltes, F., Villarreal-Garcia, G.E., Caimi, D., Siegwart, H., Gentile, A.A., Hart, A., Stark, P., Marshall, G.D., Thompson, M.G., Barreto, J., Fompeyrine, J., Abel, S.: An integrated optical modulator operating at cryogenic temperatures. Nat. Mater. 19(11), 1164–1168 (2020)

DOI

86
Li, Y., Lan, T., Li, J., Wang, Z.: High-efficiency edge-coupling based on lithium niobate on an insulator wire waveguide. Appl. Opt. 59(22), 6694–6701 (2020)

DOI

Outlines

/