Frontiers of Optoelectronics >
Design and analysis of high birefringence and nonlinearity with small confinement loss photonic crystal fiber
Received date: 30 May 2018
Accepted date: 17 Jul 2018
Published date: 15 Jun 2019
Copyright
High birefringence with low confinement loss photonic crystal fiber (PCF) has significant advantages in the field of sensing, dispersion compensation devices, nonlinear applications, and polarization filter. In this report, two different models of PCFs are presented and compared. Both the models contain five air holes rings with combination of circular and elliptical air holes arrangement. Moreover, the elliptical shaped air holes polarization and the third ring air holes rotational angle are varied. To examine different guiding characteristics, finite element method (FEM) with perfectly matched layer (PML) absorbing boundary condition is applied from 1.2 to 1.8 µm wavelength range. High birefringence, low confinement loss, high nonlinearity, and moderate dispersion values are successfully achieved in both the PCFs models. Numeric analysis shows that model-1 gives higher birefringence (2.75 × 10−2) and negative dispersion (−540.67 ps/(nm·km)) at 1.55 µm wavelength. However, model-2 gives more small confinement loss than model-1 at the same wavelength. In addition, the proposed design demonstrates the variation of rotation angle has great impact to enhance guiding properties especially the birefringence.
Rekha SAHA , Md. Mahbub HOSSAIN , Md. Ekhlasur RAHAMAN , Himadri Shekhar MONDAL . Design and analysis of high birefringence and nonlinearity with small confinement loss photonic crystal fiber[J]. Frontiers of Optoelectronics, 2019 , 12(2) : 165 -173 . DOI: 10.1007/s12200-018-0837-6
1 |
Knight J C, Russell P S J. New ways to guide light. Science, 2002, 296(5566): 276–277
|
2 |
Knight J C, Birks T A, Russell P S J, Atkin D M. All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, 1996, 21(19): 1547–1549
|
3 |
Birks T A, Knight J C, Russell P S J. Endlessly single-mode photonic crystal fiber. Optics Letters, 1997, 22(13): 961–963
|
4 |
Knight J C, Broeng J, Birks T A, Russell P S J. Photonic band gap guidance in optical fibers. Science, 1998, 282(5393): 1476–1478
|
5 |
Russell P. Photonic crystal fibers. Science, 2003, 299(5605): 358
|
6 |
Russell P, Dettmer R. A neat idea [photonic crystal fibre]. IEE Review, 2001, 47(5): 19–23
|
7 |
Sinha R K, Kumar A, Saini T S. Analysis and design of single-mode As2Se3-chalcogenide photonic crystal fiber for generation of slow light with tunable features. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(2): 287–292
|
8 |
Mishra S, Singh V K. Study of the fundamental propagation properties of a solid core holey photonic crystal fiber in the telecommunication window. Zhongguo Wuli Xuekan, 2010, 48(5): 592
|
9 |
Gangwar R, Mishra S, Singh V K. Designing of endlessly single mode polarization maintaining highly birefringent nonlinear micro-structure fiber at telecommunication window by FV-FEM. Optik-International Journal for Light and Electron Optics, 2014, 125(5): 1641–1645
|
10 |
Olszewski J, Mergo P, Gasior K, Urba’nczyk W. Highly birefringent microstructured polymer fibers optimized for a preform drilling fabrication method. Journal of Optics, 2013, 15(7): 075713
|
11 |
Ferrando A, Silvestre E, Andres P, Miret J, Andres M. Designing the properties of dispersion-flattened photonic crystal fibers. Optics Express, 2001, 9(13): 687–697
|
12 |
Reeves W, Knight J, Russell P, Roberts P. Demonstration of ultra-flattened dispersion in photonic crystal fibers. Optics Express, 2002, 10(14): 609–613
|
13 |
Raja G T, Varshney S K. Large mode area modified clad leakage channel fibers with low bending and higher differential losses. Journal of Optics, 2014, 16(1): 015403
|
14 |
Saini T S, Kumar A, Sinha R K. Triangular-core large-mode-area photonic crystal fiber with low bending loss for high power applications. Applied Optics, 2014, 53(31): 7246–7251
|
15 |
Saini T S, Kumar A, Sinha R K. Asymmetric large-mode-area photonic crystal fiber structure with effective single-mode operation: design and analysis. Applied Optics, 2016, 55(9): 2306–2311
|
16 |
Razzak S A, Namihira Y. Proposal for highly nonlinear dispersion-flattened octagonal photonic crystal fibers. IEEE Photonics Technology Letters, 2008, 20(4): 249–251
|
17 |
Gangwar R K, Bhardwaj V, Singh V K. Magnetic field sensor based on selectively magnetic fluid infiltrated dual-core photonic crystal fiber. Optical Engineering (Redondo Beach, Calif.), 2016, 55(2): 026111
|
18 |
Dhara P, Singh V K. Effect of MMF stub on the sensitivity of a photonic crystal fiber interferometer sensor at 1550 nm. Optical Fiber Technology, 2015, 21: 154–159
|
19 |
Gangwar R K, Singh V K. Refractive index sensor based on selectively liquid infiltrated dual core photonic crystal fibers. Photonics and Nanostructures-Fundamentals and Applications, 2015, 15: 46
|
20 |
Musin R, Zheltikov A. Designing dispersion-compensating photonic-crystal fibers using a genetic algorithm. Optics Communications, 2008, 281(4): 567–572
|
21 |
Simpson J, Stolen R, Sears F, Pleibel W, MacChesney J, Howard R. A single-polarization fiber. Journal of Lightwave Technology, 1983, 1(2): 370–374
|
22 |
Messerly M J, Onstott J R, Mikkelson R C. A broad-band single polarization optical fiber. Journal of Lightwave Technology, 1991, 9(7): 817–820
|
23 |
Okamoto K. Single-polarization operation in highly birefringent optical fibers. Applied Optics, 1984, 23(15): 2638
|
24 |
Yang T J, Shen L F, Chau Y F, Sung M J, Chen D, Tsai D P. High birefringence and low loss circular air-holes photonic crystal fiber using complex unit cells in cladding. Optics Communications, 2008, 281(17): 4334–4338
|
25 |
Chau Y F, Yeh H H, Tsai D P. Significantly enhanced birefringence of photonic crystal fiber using rotational binary unit cell in fiber cladding. Japanese Journal of Applied Physics, 2007, 46(43 11L): L1048–L1051
|
26 |
Chen D, Shen L. Highly birefringent elliptical-hole photonic crystal fibers with double defect. Journal of Lightwave Technology, 2007, 25(9): 2700–2705
|
27 |
Sun Y S, Chau Y F, Yeh H H, Shen L F, Yang T J, Tsai D P. High birefringence photonic crystal fiber with a complex unit cell of asymmetric elliptical air hole cladding. Applied Optics, 2007, 46(22): 5276–5281
|
28 |
Islam M A, Alam M S. Design of a polarization-maintaining equiangular spiral photonic crystal fiber for residual dispersion compensation over E+S+C+L+U wavelength bands. IEEE Photonics Technology Letters, 2012, 24(11): 930–932
|
29 |
Yue Y, Kai G, Wang Z, Sun T, Jin L, Lu Y, Zhang C, Liu J, Li Y, Liu Y, Yuan S, Dong X. Highly birefringent elliptical-hole photonic crystal fiber with squeezed hexagonal lattice. Optics Letters, 2007, 32(5): 469–471
|
30 |
Chaudhuri P R, Paulose V, Zhao C, Lu C. Near-elliptic core polarization-maintaining photonic crystal fiber: modeling birefringence characteristics and realization. IEEE Photonics Technology Letters, 2004, 16(5): 1301–1303
|
31 |
Samiul Habib M, Selim Habib M, Hasan M I, Razzak S M A. Highly nonlinear polarization maintaining two zero dispersion spiral photonic crystal fiber using artificial defects. Optical Fiber Technology, 2013, 19(6): 539–542
|
32 |
Samiul Habib M, Selim Habib M, Hasan M I, Razzak S M A, Hossain M A, Namihira Y. Polarization maintaining large nonlinear coefficient photonic crystal fibers using rotational hybrid cladding. Optik-International Journal for Light and Electron Optics, 2014, 125(3): 1011–1015
|
33 |
Hasan M I, Mahmud R, Morshed M, Hasan M R. Ultraflattened negative dispersion for residual dispersion compensation using soft glass equiangular spiral photonic crystal fiber. Journal of Modern Optics, 2016, 63(17): 1681–1687
|
34 |
Selim Habib M, Samiul Habib M, Razzak S M A, Hossain M A. Proposal for highly birefringent broadband dispersion compensating octagonal photonic crystal fiber. Optical Fiber Technology, 2013, 19(5): 461–467
|
35 |
Suzuki K, Kubota H, Kawanishi S, Tanaka M, Fujita M. Optical properties of a low-loss polarization-maintaining photonic crystal fiber. Optics Express, 2001, 9(13): 676–680
|
36 |
Hasan M R, Islam M A, Rifat A A, Hasan M I. A singlemode highly birefringent dispersion-compensating photonic crystal fiber using hybrid cladding. Journal of Modern Optics, 2017, 64(3): 218–225
|
37 |
Hasan M I, Selim Habib M, Samiul Habib M, Razzak S M A. Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber. Optical Fiber Technology, 2014, 20(1): 32–38
|
38 |
Chou Chau Y F, Lim C M, Yoong V N, Syafi’ie Idris M N. A simple structure of all circular-air-holes photonic crystal fiber for achieving high birefringence and low confinement loss. Journal of Applied Physics, 2015, 118(24): 243102
|
39 |
Yang K Y, Chau Y F, Huang Y W, Yeh H Y, Ping Tsai D. Design of high birefringence and low confinement loss photonic crystal fibers with five rings hexagonal and octagonal symmetry airholes in fiber cladding. Journal of Applied Physics, 2011, 109(9): 093103
|
40 |
Md A I. Broadband dispersion compensation of single mode fiber by using modified decagonal photonic crystal fiber having high birefringence. Journal of Lasers Optics & Photonics, 2015, 2: 123
|
41 |
Haque M M, Rahman M S, Habib M S, Razzak S. Design and characterization of single mode circular photonic crystal fiber for broadband dispersion compensation. Optik-International Journal for Light and Electron Optics, 2014, 125(11): 2608–2611
|
42 |
Gangwar R K, Singh V K. Study of highly birefringence dispersion shifted photonic crystal fiber with asymmetrical cladding. Optik-International Journal for Light and Electron Optics, 2016, 127(24): 11854–11859
|
43 |
Koshiba M. Full-vector analysis of photonic crystal fibers using the finite element method. IEICE Transactions on Electronics, 2002, 85(4): 881
|
44 |
Lee H, Schmidt M, Tyagi H, Sempere L P, Russell P S J. Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber. Applied Physics Letters, 2008, 93(11): 111102
|
45 |
Malitson I. Interspecimen comparison of the refractive index of fused silica. Journal of the Optical Society of America, 1965, 55(10): 1205
|
46 |
Agrawal G P. Fiber-Optic Communication Systems. vol. 222. New York: John Wiley & Sons, 2012
|
47 |
Saitoh K, Koshiba M. Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers. IEEE Journal of Quantum Electronics, 2002, 38(7): 927–933
|
48 |
Caillaud C, Gilles C, Provino L, Brilland L, Jouan T, Ferre S, Carras M, Brun M, Mechin D, Adam J L, Troles J. Highly birefringent chalcogenide optical fiber for polarization-maintaining in the 3–8.5 µm mid-IR window. Optics Express, 2016, 24(8): 7977–7986
|
49 |
Chen D, Wu G. Highly birefringent photonic crystal fiber based on a double-hole unit. Applied Optics, 2010, 49(9): 1682–1686
|
50 |
Begum F, Namihira Y, Razzak S A, Kaijage S, Hai N H, Kinjo T, Miyagi K, Zou N. Novel broadband dispersion compensating photonic crystal fibers: applications in high-speed transmission systems. Optics & Laser Technology, 2009, 41(6): 679–686
|
51 |
Haxha S, Ademgil H. Novel design of photonic crystal fibres with low confinement losses, nearly zero ultra-flatted chromatic dispersion, negative chromatic dispersion and improved effective mode area. Optics Communications, 2008, 281(2): 278–286
|
52 |
Lægsgaard J, Libori S B, Hougaard K, Riishede J, Larsen T, Sørensen T, Hansen T P, Hansen K P, Nielsen M D, Jensen J, Bjarklev A. Dispersion properties of photonic crystal fibers-issues and opportunities. MRS Online Proceedings Library Archive, 2003, 797(8): 135–136
|
53 |
Luke S, Sudheer S, Pillai V M. Tellurite based circular photonic crystal fiber with high nonlinearity and low confinement loss. Optik-International Journal for Light and Electron Optics, 2016, 127(23): 11138–11142
|
54 |
Liu Z, Wu C, Tse M L V, Lu C, Tam H Y. Ultrahigh birefringence index-guiding photonic crystal fiber and its application for pressure and temperature discrimination. Optics Letters, 2013, 38(9): 1385–1387
|
55 |
Falkenstein P, Merritt C D, Justus B L. Fused preforms for the fabrication of photonic crystal fibers. Optics Letters, 2004, 29(16): 1858–1860
|
/
〈 | 〉 |