Frontiers of Optoelectronics >
A tutorial introduction to graphene-microfiber waveguide and its applications
Received date: 07 Jul 2015
Accepted date: 18 Nov 2015
Published date: 29 Nov 2016
Copyright
Graphene-microfiber with the advantage of graphene material and the microfiber has been hailed as a wonderful waveguide in optics. A tutorial introduction to the graphene-microfiber (GMF) waveguides including the effect of graphene on waveguide, fabrication and applications has been presented. Here, we reviewed recent progress in the graphene waveguides from mode-locking and Q-switching in fiber laser to gas sensing and optical modulation. A brief outlook for opportunities and challenges of GMF in the future has been presented. With the novel nanotechnology emerging, GMF could offer new possibilities for future-optic circuits, systems and networks.
Key words: graphene; microfiber; optical mode locking; optical sensor
Xiaoying HE , Min XU , Xiangchao ZHANG , Hao ZHANG . A tutorial introduction to graphene-microfiber waveguide and its applications[J]. Frontiers of Optoelectronics, 2016 , 9(4) : 535 -543 . DOI: 10.1007/s12200-016-0541-3
1 |
Bonaccorso F, Sun Z, Hasan T, Ferrari A C. Graphene photonics and optoelectronics. Nature Photonics, 2010, 4(9): 611–622
|
2 |
Avouris P. Graphene: electronic and photonic properties and devices. Nano Letters, 2010, 10(11): 4285–4294
|
3 |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197–200
|
4 |
Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L. Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008, 146(9-10): 351–355
|
5 |
Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A, Geim A K. Giant intrinsic carrier mobilities in graphene and its bilayer. Physical Review Letters, 2008, 100(1): 016602-1–016602-4
|
6 |
Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen Y R. Gate-variable optical transitions in graphene. Science, 2008, 320(5873): 206–209
|
7 |
Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881): 1308-1–1308-7
|
8 |
Casiraghi C, Hartschuh A, Lidorikis E, Qian H, Harutyunyan H, Gokus T, Novoselov K S, Ferrari A C. Rayleigh imaging of graphene and graphene layers. Nano Letters, 2007, 7(9): 2711–2717
|
9 |
Almeida V R, Barrios C A, Panepucci R R, Lipson M. All-optical control of light on a silicon chip. Nature, 2004, 431(7012): 1081–1084
|
10 |
Pacifici D, Lezec H J, Atwater H A. All-optical modulation by plasmonic excitation of CdSe quantum dots. Nature Photonics, 2007, 1(7): 402–406
|
11 |
Hu X, Jiang P, Ding C, Yang H, Gong Q. Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity. Nature Photonics, 2008, 2(3): 185–189
|
12 |
Seibert K, Cho G C, Kütt W, Kurz H, Reitze D H, Dadap J I, Ahn H, Downer M C, Malvezzi A M. Femtosecond carrier dynamics in graphite. Physical Review B: Condensed Matter and Materials Physics, 1990, 42(5): 2842–2851
|
13 |
Breusing M, Ropers C, Elsaesser T. Ultrafast carrier dynamics in graphite. Physical Review Letters, 2009, 102(8): 086809-1–086809-4
|
14 |
Sun D, Wu Z K, Divin C, Li X, Berger C, de Heer W A, First P N, Norris T B. Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. Physical Review Letters, 2008, 101(15): 157402-1–157402-4
|
15 |
Hendry E, Hale P J, Moger J, Savchenko A K, Mikhailov S A. Coherent nonlinear optical response of graphene. Physical Review Letters, 2010, 105(9): 097401-1–097401-4
|
16 |
Zhang H, Virally S, Bao Q, Ping L K, Massar S, Godbout N, Kockaert P. Z-scan measurement of the nonlinear refractive index of graphene. Optics Letters, 2012, 37(11): 1856–1858
|
17 |
Wu Y, Yao B, Cheng Y, Rao Y, Gong Y, Zhou X, Wu B, Chiang K S. Four-wave mixing in a microfiber attached onto a graphene film. IEEE Photonics Technology Letters, 2014, 26(3): 249–252
|
18 |
Wu Y, Yao B C, Feng Q Y, Cao X L, Zhou X Y, Rao Y J, Gong Y, Zhang W L, Wang Z G, Chen Y F, Chiang K S. Generation of cascaded four-wave-mixing with graphene-coated microfiber. Photonics Research, 2015, 3(2): A64–A68
|
19 |
Xia F, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P. Ultrafast graphene photodetector. Nature Nanotechnology, 2009, 4(12): 839–843
|
20 |
Kim K, Choi J, Kim T, Cho S, Chung H. A role for graphen in silicon-based semiconductor devices. Nature, 2011, 479((7373)): 338–344
|
21 |
Liu M, Yin X, Zhang X. Double-layer graphene optical modulator. Nano Letters, 2012, 12(3): 1482–1485
|
22 |
Bao Q, Zhang H, Wang B, Ni Z, Lim C H Y X, Wang Y, Tang D Y, Loh K P. Broadband graphene polarizer. Nature Photonics, 2011, 5(7): 411–415
|
23 |
Bao Q, Loh K P. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 2012, 6(5): 3677–3694
|
24 |
Tong L, Lou J, Mazur E. Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. Optics Express, 2004, 12(6): 1025–1035
|
25 |
Tong L, Gattass R R, Ashcom J B, He S, Lou J, Shen M, Maxwell I, Mazur E. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature, 2003, 426(6968): 816–819
|
26 |
Brambilla G, Finazzi V, Richardson D J. Ultra-low-loss optical fiber nanotaper. Optics Express, 2004, 12(10): 2258–2263
|
27 |
Brambilla G, Xu F, Horak P, Jung Y, Koizumi F, Sessions N P, Koukharenko E, Feng X, Murugan G S, Wilkinson J S, Richardson D J. Optical fiber nanowires and microwires: fabrication and applications. Advances in Optics and Photonics, 2009, 1(1): 107–161
|
28 |
Liu Z B, Feng M, Jiang W S, Xin W, Wang P, Sheng Q W, Liu Y G, Wang D N, Zhou W Y, Tian J G. Broadband all-optical modulation using a graphene-covered-microfiber. Laser Physics Letters, 2013, 10(6): 065901-1–065901-5
|
29 |
Li W, Chen B, Meng C, Fang W, Xiao Y, Li X, Hu Z, Xu Y, Tong L, Wang H, Liu W, Bao J, Shen Y R. Ultrafast all-optical graphene modulator. Nano Letters, 2014, 14(2): 955–959
|
30 |
Wu Y, Yao B, Cheng Y, Rao Y, Gong Y, Zhang W, Wang Z, Chen Y. Hybrid graphene-microfiber waveguide for chemical gas sensing. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(1): 4400206-1–4400206-6
|
31 |
Yao B, Wu Y, Cheng Y, Zhang A, Cong Y, Rao Y, Wang Z, Chen Y. All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide. Sensors and Actuators B: Chemical, 2014, 194: 142–148
|
32 |
Yao B C, Wu Y, Zhang A Q, Rao Y J, Wang Z G, Cheng Y, Gong Y, Zhang W L, Chen Y F, Chiang K S. Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing. Optics Express, 2014, 22(23): 28154–28162
|
33 |
Wu Y, Yao B, Zhang A, Rao Y, Wang Z, Cheng Y, Gong Y, Zhang W, Chen Y, Chiang K S. Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing. Optics Letters, 2014, 39(5): 1235–1237
|
34 |
Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F, Bonaccorso F, Basko D M, Ferrari A C. Graphene mode-locked ultrafast laser. ACS Nano, 2010, 4(2): 803–810
|
35 |
He X, Liu Z, Wang D, Yang M, Liao C R, Zhao X. Passively mode-locked fiber laser based on reduced graphene oxide on microfiber for ultra-wide-band doublet pulse generation. Journal of Lightwave Technology, 2012, 30(7): 984–989
|
36 |
Wang J, Luo Z, Zhou M, Ye C, Fu H, Cai Z, Cheng H, Xu H, Qi W. Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker. IEEE Photonics Journal, 2012, 4(5): 1295–1305
|
37 |
Sheng Q, Feng M, Xin W, Han T, Liu Y, Liu Z, Tian J. Actively manipulation of operation states in passively pulsed fiber lasers by using graphene saturable absorber on microfiber. Optics Express, 2013, 21(12): 14859–14866
|
38 |
Xin W, Liu Z B, Sheng Q W, Feng M, Huang L G, Wang P, Jiang W S, Xing F, Liu Y G, Tian J G. Flexible graphene saturable absorber on two-layer structure for tunable mode-locked soliton fiber laser. Optics Express, 2014, 22(9): 10239–10247
|
39 |
He X, Wang D N, Liu Z. Pulse-width tuning in a passively mode-locked fiber laser with graphene saturable absorber. IEEE Photonics Technology Letters, 2014, 26(4): 360–363
|
40 |
Luo Z Q, Wang J Z, Zhou M, Xu H Y, Cai Z P, Ye C Y. Multi-wavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field. Laser Physics Letters, 2012, 9(3): 229–233
|
41 |
Luo A, Zhu P, Liu H, Zheng X, Zhao N, Liu M, Cui H, Luo Z, Xu W. Microfiber-based, highly nonlinear graphene saturable absorber for formation of versatile structural soliton molecules in a fiber laser. Optics Express, 2014, 22(22): 27019–27025
|
42 |
Zhao N, Liu M, Liu H, Zheng X, Ning Q, Luo A, Luo Z, Xu W. Dual-wavelength rectangular pulse Yb-doped fiber laser using a microfiber-based graphene saturable absorber. Optics Express, 2014, 22(9): 10906–10913
|
43 |
Liu C, Ye C, Luo Z, Cheng H, Wu D, Zheng Y, Liu Z, Qu B. High-energy passively Q-switched 2 μm Tm3+-doped double-clad fiber laser using graphene-oxide-deposited fiber taper. Optics Express, 2013, 21(1): 204–209
|
44 |
Sheng Q W, Feng M, Xin W, Guo H, Han T Y, Li Y G, Liu Y G, Gao F, Song F, Liu Z B, Tian J G. Tunable graphene saturable absorber with cross absorption modulation for mode-locking in fiber laser. Applied Physics Letters, 2014, 105(4): 041901-1–041901-5
|
45 |
Ren A, Feng M, Song F, Ren Y, Yang S, Yang Z, Li Y, Liu Z, Tian J. Actively Q-switched ytterbium-doped fiber laser by an all-optical Q-switcher based on graphene saturable absorber. Optics Express, 2015, 23(16): 21490–21496
|
46 |
Ahmad H, Dernaika M, Harun S W. All-fiber dual wavelength passive Q-switched fiber laser using a dispersion-decreasing taper fiber in a nonlinear loop mirror. Optics Express, 2014, 22(19): 22794–22801
|
47 |
Qi Y, Liu H, Cui H, Huang Q, Ning Q, Liu M, Luo Z, Luo A, Xu W,Graphene-deposited microfiber photonics device for ultrahigh-repetition rate pulse generation in a fiber laser. Optics Express, 2015, 23(14): 17720–17726
|
48a |
Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen Z X, Loh K P, Tang D Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Advanced Functional Materials, 2009, 19(19): 3077–3083
|
48 |
Vakil A, Engheta N. Transformation optics using graphene. Science, 2011, 332(6035): 1291–1294
|
49 |
Yan S, Zheng B, Chen J, Xu F, Lu Y,Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator. Applied Physics Letters, 2015, 107: 053502-1–053502-4
|
50 |
He X, Zhang X, Zhang H, Xu M. Graphene covered on microfiber exhibiting polarization and polarization-dependent saturable absorption. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(1): 4500107-1–4500107-7
|
51 |
Sun X, Qiu C, Wu J, Zhou H, Pan T, Mao J, Yin X, Liu R, Gao W, Fang Z, Su Y. Broadband photodetection in a microfiber-graphene device. Optics Express, 2015, 23(19): 25209–25216
|
52 |
Xing X, Zheng J, Sun C, Li F, Zhu D, Lei L, Cai X, Wu T. Graphene oxide-deposited microfiber: a new photothermal device for various microbubble generation. Optics Express, 2013, 21(26): 31862–31871
|
53 |
Zhu B, Ren G, Gao Y, Yang Y, Lian Y, Jian S. Graphene-coated tapered nanowire infrared probe: a comparison with metal-coated probes. Optics Express, 2014, 22(20): 24096–24103
|
/
〈 | 〉 |