Mueller matrix polarimetry for quantitative evaluation of the Achilles tendon injury recovery

Huibin Yang, Minhui Xu, Honghui He, Nan Zeng, Jiawei Song, Tongyu Huang, Ziyang Liang, Hui Ma

PDF(5283 KB)
PDF(5283 KB)
Front. Optoelectron. ›› 2024, Vol. 17 ›› Issue (4) : 39. DOI: 10.1007/s12200-024-00142-2
RESEARCH ARTICLE

Mueller matrix polarimetry for quantitative evaluation of the Achilles tendon injury recovery

Author information +
History +

Abstract

Achilles tendon injuries, as a widely existing disease, have attracted a lot of research interest. Mueller matrix polarimetry, as a novel label-free quantitative imaging method, has been widely used in various applications of lesion identification and pathological diagnosis. However, focusing on the recovery process of Achilles tendon injuries, current optical imaging methods have not yet achieved the label-free precise identification and quantitative evaluation. In this study, using Mueller matrix polarimetry, various Achilles tendon injury samples were characterized specifically, and the efficacy of different recovery schemes was evaluated accordingly. Experiments indicate that injured Achilles tendons show less phase retardance, larger diattenuation, and relatively disordered orientation. The combination of experiments with Monte Carlo simulation results illustrate the microscopic mechanism of the Achilles tendon recovery process from three aspects, that is, the increased fiber diameter, a more consistent fiber orientation, and greater birefringence induced by more collagen protein. Finally, based on the statistical distribution of polarization measurements, a polarization specific characterization parameter was extracted to construct a label-free image, which cannot only intuitively show the injury and recovery of Achilles tendon samples, but also give a quantitative evaluation of the treatment.

Graphical abstract

Keywords

Mueller matrix / Achilles tendon injury / Polarimetry

Cite this article

Download citation ▾
Huibin Yang, Minhui Xu, Honghui He, Nan Zeng, Jiawei Song, Tongyu Huang, Ziyang Liang, Hui Ma. Mueller matrix polarimetry for quantitative evaluation of the Achilles tendon injury recovery. Front. Optoelectron., 2024, 17(4): 39 https://doi.org/10.1007/s12200-024-00142-2

References

[1]
Ruiz-Alonso, S. , Lafuente-Merchan, M. , Ciriza, J. , Saenz-del-Burgo, L. , Pedraz, J.L. : Tendon tissue engineering: cells, growth factors, scaffolds and production techniques. J. Control. Release 333, 448- 486 (2021)
CrossRef Google scholar
[2]
Citro, V. , Clerici, M. , Boccaccini, A.R. , Della Porta, G. , Maffulli, N. , Forsyth, N.R. : Tendon tissue engineering: an overview of biologics to promote tendon healing and repair. J. Tissue Eng. 14, 20417314231196276 (2023)
CrossRef Google scholar
[3]
de Aro, A.A. , de Campos Vidal, B. , Pimentel, E.R. : Biochemical and anisotropical properties of tendons. Micron 43 (2), 205- 214 (2012)
CrossRef Google scholar
[4]
Ning, C. , Li, P. , Gao, C. , Fu, L. , Liao, Z. , Tian, G. , Yin, H. , Li, M. , Sui, X. , Yuan, Z. , Liu, S. , Guo, Q. : Recent advances in tendon tissue engineering strategy. Front. Bioeng. Biotechnol. 11, 1115312 (2023)
CrossRef Google scholar
[5]
Schulze-Tanzil, G. , Al-Sadi, O. , Wiegand, E. , Ertel, W. , Busch, C. , Kohl, B. , Pufe, T. : The role of pro-inflammatory and immunoregulatory cytokines in tendon healing and rupture: new insights. Scand. J. Med. Sci. Sports 21 (3), 337- 351 (2011)
CrossRef Google scholar
[6]
Sahni, V. , Tibrewal, S. , Bissell, L. , Khan, W. : The role of tissue engineering in Achilles tendon repair: a review. Curr. Stem Cell Res. Ther. 10 (1), 31- 36 (2014)
CrossRef Google scholar
[7]
Dams, O.C. , Reininga, I.H.F. , Gielen, J.L. , van den Akker-Scheek, I. , Zwerver, J. : Imaging modalities in the diagnosis and monitoring of Achilles tendon ruptures: a systematic review. Injury 48 (11), 2383- 2399 (2017)
CrossRef Google scholar
[8]
Hase, E. , Minamikawa, T. , Sato, K. , Yonekura, D. , Takahashi, M. , Yasui, T. : Quantitative evaluation of both histological and mechanical recovery in injured tendons using Fourier-transform second-harmonic-generation microscopy. IEEE J. Sel. Top. Quantum Electron. 27 (4), 1- 8 (2021)
CrossRef Google scholar
[9]
Bagnaninchi, P.O. , Yang, Y. , Bonesi, M. , Maffulli, G. , Phelan, C. , Meglinski, I. , El Haj, A. , Maffulli, N. : In-depth imaging and quantification of degenerative changes associated with Achilles ruptured tendons by polarization-sensitive optical coherence tomography. Phys. Med. Biol. 55 (13), 3777- 3787 (2010)
CrossRef Google scholar
[10]
Cury, D.P. , Schäfer, B.T. , de Almeida, S.R.Y. , Righetti, M.M.S. , Watanabe, I. : Application of a purified protein from natural latex and the influence of suture type on Achilles tendon repair in rats. Am. J. Sports Med. 47 (4), 901- 914 (2019)
CrossRef Google scholar
[11]
Dong, Y. , He, H. , Sheng, W. , Wu, J. , Ma, H. : A quantitative and non-contact technique to characterise microstructural variations of skin tissues during photo-damaging process based on Mueller matrix polarimetry. Sci. Rep. 7 (1), 14702 (2017)
CrossRef Google scholar
[12]
He, C. , Chang, J. , Hu, Q. , Wang, J. , Antonello, J. , He, H. , Liu, S. , Lin, J. , Dai, B. , Elson, D.S. , Xi, P. , Ma, H. , Booth, M.J. : Complex vectorial optics through gradient index lens cascades. Nat. Commun. 10 (1), 4264 (2019)
CrossRef Google scholar
[13]
Liu, T. , Lu, M. , Chen, B. , Zhong, Q. , Li, J. , He, H. , Mao, H. , Ma, H. : Distinguishing structural features between Crohn’s disease and gastrointestinal luminal tuberculosis using Mueller matrix derived parameters. J. Biophotonics 12 (12), e201900151 (2019)
CrossRef Google scholar
[14]
Sun, T. , Liu, T. , He, H. , Wu, J. , Ma, H. : Distinguishing anisotropy orientations originated from scattering and birefringence of turbid media using Mueller matrix derived parameters. Opt. Lett. 43 (17), 4092- 4095 (2018)
CrossRef Google scholar
[15]
He, H. , He, C. , Chang, J. , Lv, D. , Wu, J. , Duan, C. , Zhou, Q. , Zeng, N. , He, Y. , Ma, H. : Monitoring microstructural variations of fresh skeletal muscle tissues by Mueller matrix imaging. J. Biophotonics 10 (5), 664- 673 (2017)
CrossRef Google scholar
[16]
Dong, Y. , Qi, J. , He, H. , He, C. , Liu, S. , Wu, J. , Elson, D.S. , Ma, H. : Quantitatively characterizing the microstructural features of breast ductal carcinoma tissues in different progression stages by Mueller matrix microscope. Biomed. Opt. Express 8 (8), 3643- 3655 (2017)
CrossRef Google scholar
[17]
Yao, Y. , Zhang, F. , Wang, B. , Wan, J. , Si, L. , Dong, Y. , Zhu, Y. , Liu, X. , Chen, L. , Ma, H. : Polarization imaging-based radiomics approach for the staging of liver fibrosis. Biomed. Opt. Express 13 (3), 1564- 1580 (2022)
CrossRef Google scholar
[18]
Carnicer, A. , Bosch, S. , Javidi, B. : Mueller matrix polarimetry with 3D integral imaging. Opt. Express 27 (8), 11525- 11536 (2019)
CrossRef Google scholar
[19]
Ushenko, V.A. , Hogan, B.T. , Dubolazov, A. , Piavchenko, G. , Kuznetsov, S.L. , Ushenko, A.G. , Ushenko, Y.O. , Gorsky, M. , Bykov, A. , Meglinski, I. : 3D Mueller matrix mapping of layered distributions of depolarisation degree for analysis of prostate adenoma and carcinoma diffuse tissues. Sci. Rep. 11 (1), 5162 (2021)
CrossRef Google scholar
[20]
Lopera, M.J. , Trusiak, M. , Doblas, A. , Ottevaere, H. , Trujillo, C. : Mueller-Gabor holographic microscopy. Opt. Lasers Eng. 178, 108191 (2024)
CrossRef Google scholar
[21]
Peyvasteh, M. , Tryfonyuk, L. , Ushenko, V. , Syvokorovskaya, A.V. , Dubolazov, A. , Vanchulyak, O. , Ushenko, A. , Ushenko, Y. , Gorsky, M. , Sidor, M. , Tomka, Y. , Soltys, I. , Bykov, A. , Meglinski, I. : 3D Mueller-matrix-based azimuthal invariant tomography of polycrystalline structure within benign and malignant softtissue tumours. Laser Phys. Lett. 17 (11), 115606 (2020)
CrossRef Google scholar
[22]
Reiser, K. , Stoller, P. , Knoesen, A. : Three-dimensional geometry of collagenous tissues by second harmonic polarimetry. Sci. Rep. 7 (1), 2642 (2017)
CrossRef Google scholar
[23]
Huang, T. , Meng, R. , Qi, J. , Liu, Y. , Wang, X. , Chen, Y. , Liao, R. , Ma, H. : Fast Mueller matrix microscope based on dual DoFP polarimeters. Opt. Lett. 46 (7), 1676- 1679 (2021)
CrossRef Google scholar
[24]
Lu, S.Y. , Chipman, R.A. : Interpretation of Mueller matrices based on polar decomposition. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 13 (5), 1106- 1113 (1996)
CrossRef Google scholar
[25]
He, H. , Liao, R. , Zeng, N. , Li, P. , Chen, Z. , Liu, X. , Ma, H. : Mueller matrix polarimetry-an emerging new tool for characterizing the microstructural feature of complex biological specimen. J. Lightwave Technol. 37 (11), 2534- 2548 (2019)
CrossRef Google scholar
[26]
He, C. , He, H. , Chang, J. , Dong, Y. , Liu, S. , Zeng, N. , He, Y. , Ma, H. : Characterizing microstructures of cancerous tissues using multispectral transformed Mueller matrix polarization parameters. Biomed. Opt. Express 6 (8), 2934- 2945 (2015)
CrossRef Google scholar
[27]
Luu, T.N. , Phan, Q.H. , Le, T.H. : Classification of human skin cancer using Stokes-Mueller decomposition method and artificial intelligence models. Optik 249, 168239 (2022)
CrossRef Google scholar
[28]
Li, X.P. , Liao, R. , Ma, H. , Leung, P.T.Y. , Yan, M. : Polarimetric learning: a Siamese approach to learning distance metrics of algal Mueller matrix images. Appl. Opt. 57 (14), 3829- 3837 (2018)
CrossRef Google scholar
[29]
Cai, J.F. , Candès, E.J. , Shen, Z. : A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20 (4), 1956- 1982 (2010)
CrossRef Google scholar
[30]
Liu, Z. , Song, J. , Fu, Q. , Zeng, N. , Ma, H. : Study on anisotropy orientation due to well-ordered fibrous biological microstructures. J. Biomed. Opt. 29 (5), 052919 (2024)
CrossRef Google scholar
[31]
Song, J. , Zeng, N. , Guo, W. , Guo, J. , Ma, H. : Stokes polarization imaging applied for monitoring dynamic tissue optical clearing. Biomed. Opt. Express 12 (8), 4821- 4836 (2021)
CrossRef Google scholar
[32]
He, H. , Zeng, N. , Du, E. , Guo, Y. , Li, D. , Liao, R. , He, Y. , Ma, H. : Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers. J. Biomed. Opt. 18 (4), 046002 (2013)
CrossRef Google scholar
[33]
Rosenbaum, A.J. , Wicker, J.F. , Dines, J.S. , Bonasser, L. , Razzano, P. , Dines, D.M. , Grande, D.A. : Histologic stages of healing correlate with restoration of tensile strength in a model of experimental tendon repair. HSS J. 6 (2), 164- 170 (2010)
CrossRef Google scholar
[34]
Wang, L. , Zimnyakov, D. : Optical polarization in biomedical applications, vol. 467. Springer, Berlin (2006)

RIGHTS & PERMISSIONS

2024 The Author(s)
PDF(5283 KB)

Accesses

Citations

Detail

Sections
Recommended

/