Plasma photonic crystal ‘kaleidoscope’ with flexible control of topology and electromagnetism

Jing Wang, Shuang Liu, Weili Fan, Shuo Wang, Cuicui Lu, Yafeng He, Fucheng Liu, Xiaoyong Hu

PDF(3503 KB)
PDF(3503 KB)
Front. Optoelectron. ›› 2024, Vol. 17 ›› Issue (4) : 34. DOI: 10.1007/s12200-024-00137-z
RESEARCH ARTICLE

Plasma photonic crystal ‘kaleidoscope’ with flexible control of topology and electromagnetism

Author information +
History +

Abstract

Continuous development of photonic crystals (PCs) over the last 30 years has carved out many new scientific frontiers. However, creating tunable PCs that enable flexible control of geometric configurations remains a challenge. Here we present a scheme to produce a tunable plasma photonic crystal (PPC) ‘kaleidoscope’ with rich diversity of structural configurations in dielectric barrier discharge. Multi-freedom control of the PPCs, including the symmetry, dielectric constant, crystal orientation, lattice constant, topological state, and structures of scattering elements, has been realized. Four types of lattice reconfigurations are demonstrated, including transitions from periodic to periodic, disordered to ordered, non-topological to topological, and striped to honeycomb Moiré lattices. Furthermore, alterations in photonic band structures corresponding to the reconstruction of various PPCs have been investigated. Our system presents a promising platform for generating a PPC ‘kaleidoscope’, offering benefits such as reduced equipment requirements, low cost, rapid response, and enhanced flexibility. This development opens up new opportunities for both fundamental and applied research.

Graphical abstract

Keywords

Plasma photonic crystals / Dielectric barrier discharges / Multi-freedom control / Topological state / Dynamic reconfiguration

Cite this article

Download citation ▾
Jing Wang, Shuang Liu, Weili Fan, Shuo Wang, Cuicui Lu, Yafeng He, Fucheng Liu, Xiaoyong Hu. Plasma photonic crystal ‘kaleidoscope’ with flexible control of topology and electromagnetism. Front. Optoelectron., 2024, 17(4): 34 https://doi.org/10.1007/s12200-024-00137-z

References

[1]
Cubukcu, E., Aydin, K., Ozbay, E., Foteinopoulou, S., Soukoulis, C.M.: Negative refraction by photonic crystals. Nature 423(6940), 604–605 (2003)
CrossRef Google scholar
[2]
Baba, T.: Slow light in photonic crystals. Nat. Photon. 2(8), 465–473 (2008)
CrossRef Google scholar
[3]
Arlandis, J., Centeno, E., Polles, R., Moreau, A., Campos, J., Gauthier-Lafaye, O., Monmayrant, A.: Mesoscopic self-collimation and slow light in all-positive index layered photonic crystals. Phys. Rev. Lett. 108(3), 037401 (2012)
CrossRef Google scholar
[4]
Schilling, J.: The quest for zero refractive index. Nat. Photon. 5(8), 449–451 (2011)
CrossRef Google scholar
[5]
Huang, X., Lai, Y., Hang, Z.H., Zheng, H., Chan, C.T.: Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat. Mater. 10(8), 582–586 (2011).
CrossRef Google scholar
[6]
Mukherjee, S., Spracklen, A., Choudhury, D., Goldman, N., Öhberg, P., Andersson, E., Thomson, R.R.: Observation of a localized flat-band state in a photonic lieb lattice. Phys. Rev. Lett. 114(24), 245504 (2015)
CrossRef Google scholar
[7]
Grillet, C., Monat, C., Smith, C.L., Lee, M.W., Tomljenovic-Hanic, S., Karnutsch, C., Eggleton, B.J.: Reconfigurable photonic crystal circuits. Laser Photon. Rev. 4(2), 192–204 (2010)
CrossRef Google scholar
[8]
Cheng, X., Jouvaud, C., Ni, X., Mousavi, S.H., Genack, A.Z., Khanikaev, A.B.: Robust reconfigurable electromagnetic pathways within a photonic topological insulator. Nat. Mater. 15(5), 542–548 (2016)
CrossRef Google scholar
[9]
Li, T., Liu, G., Kong, H., Yang, G., Wei, G., Zhou, X.: Recent advances in photonic crystal-based sensors. Coord. Chem. Rev. 475, 214909 (2023)
CrossRef Google scholar
[10]
Fenzl, C., Hirsch, T., Wolfbeis, O.S.: Photonic crystals for chemical sensing and biosensing. Angew. Chem. Int. Ed. 53(13), 3318–3335 (2014)
CrossRef Google scholar
[11]
Arsenault, A.C., Puzzo, D.P., Manners, I., Ozin, G.A.: Photonic-crystal full-colour displays. Nat. Photonics 1(8), 468–472 (2007)
CrossRef Google scholar
[12]
Ye, S., Fu, Q., Ge, J.: Invisible photonic prints shown by deformation. Adv. Func. Mater. 24(41), 6430–6438 (2014)
CrossRef Google scholar
[13]
Li, H., Wang, J., Lin, H., Xu, L., Xu, W., Wang, R., Song, Y., Zhu, D.: Amplification of fluorescent contrast by photonic crystals in optical storage. Adv. Mater. 11(22), 1237–1241 (2010)
CrossRef Google scholar
[14]
Liao, G., Chen, S., Quan, X., Chen, H., Zhang, Y.: Photonic crystal coupled tio2/polymer hybrid for efficient photocatalysis under visible light irradiation. Environ. Sci. Technol. 44(9), 3481–3485 (2010)
CrossRef Google scholar
[15]
Colodrero, S., Forneli, A., López-López, C., Pellejà, L., Míguez, H., Palomares, E.: Efficient transparent thin dye solar cells based on highly porous 1d photonic crystals. Adv. Func. Mater. 22(6), 1303–1310 (2012)
CrossRef Google scholar
[16]
Fang, Y., Ni, Y., Leo, S.Y., Taylor, C., Basile, V., Jiang, P.: Reconfigurable photonic crystals enabled by pressure-responsive shapememory polymers. Nat. Commun. 6(1), 7416 (2015)
CrossRef Google scholar
[17]
Kitagawa, J., Kodama, M., Koya, S., Nishifuji, Y., Armand, D., Kadoya, Y.: Thz wave propagation in two-dimensional metallic photonic crystal with mechanically tunable photonic-bands. Opt. Express 20(16), 17271–17280 (2012)
CrossRef Google scholar
[18]
Pouya, C., Kolle, M., Aizenberg, J., Bertoldi, K., Weaver, J.C., Vukusic, P.: Characterization of a mechanically tunable gyroid photonic crystal inspired by the butterfly parides sesostris. Adv. Opt. Mater. (2015)
CrossRef Google scholar
[19]
Wu, G., Cho, Y., Choi, I.-S., Ge, D., Li, J., Han, H.N., Lubensky, T., Yang, S.: Directing the deformation paths of soft metamaterials with prescribed asymmetric units. Adv. Mater. 27(17), 2747–2752 (2015)
CrossRef Google scholar
[20]
Yang, D., Tian, H., Ji, Y.: Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays. Opt. Express 19(21), 20023–20034 (2011)
CrossRef Google scholar
[21]
Kurt, H., Citrin, D.S.: Reconfigurable multimode photonic-crystal waveguides. Opt. Express 16(16), 11995–12001 (2008)
CrossRef Google scholar
[22]
Speijcken, N.W., Dündar, M.A., Casas Bedoya, A., Monat, C., Grillet, C., Domachuk, P., Nötzel, R., Eggleton, B.J., Heijden, R.W.: In situ optofluidic control of reconfigurable photonic crystal cavities. Appl. Phys. Lett. 100(26) (2012)
CrossRef Google scholar
[23]
Chong, H.M., De La Rue, R.: Tuning of photonic crystal wave-guide microcavity by thermooptic effect. IEEE Photon. Technol. Lett. 16(6), 1528–1530 (2004)
CrossRef Google scholar
[24]
Zhang, Y., Li, Z., Xu, S., Xiang, Y.: Tunable and reconfigurable higher-order topological insulators in photonic crystals with phase change materials. Ann. Phys. 534(1), 2100293 (2022)
CrossRef Google scholar
[25]
Honda, M., Seki, T., Takeoka, Y.: Dual tuning of the photonic band-gap structure in soft photonic crystals. Adv. Mater. 21(18), 1801–1804 (2009)
CrossRef Google scholar
[26]
Choi, D.I., Niu, Q.: Bose-einstein condensates in an optical lattice. Phys. Rev. Lett. 82(10), 2022 (1999)
CrossRef Google scholar
[27]
Chin, J.K., Miller, D., Liu, Y., Stan, C., Setiawan, W., Sanner, C., Xu, K., Ketterle, W.: Evidence for superfluidity of ultracold fermions in an optical lattice. Nature 443(7114), 961–964 (2006)
CrossRef Google scholar
[28]
Peil, S., Porto, J.V., Tolra, B.L., Obrecht, J., King, B., Subbotin, M., Rolston, S., Phillips, W.D.: Patterned loading of a bose-einstein condensate into an optical lattice. Phys. Rev. A 67(5), 051603 (2003)
CrossRef Google scholar
[29]
Zhao, Y., Liang, F., Wang, X., Zhao, D., Wang, B.Z.: Tunable and programmable topological valley transport in photonic crystals with liquid crystals. J. Phys. D Appl. Phys. 55(15), 155102 (2022)
CrossRef Google scholar
[30]
Hu, W., Hu, J., Wen, S., Xiang, Y.: Dynamically reconfigurable topological states in photonic crystals with liquid crystals. Opt. Lett. 46(11), 2589–2592 (2021)
CrossRef Google scholar
[31]
Feng, T.M., Wang, Y.F., Tseng, H.Y., Li, C.C., Jau, H.C., Kuo, C.T., Lin, T.H., Wang, C.T.: Switching of lasing direction in reconfigurable chiral photonic crystals. Opt. Mater. Express 13(6), 1555–1562 (2023)
CrossRef Google scholar
[32]
Lee, S.S., Kim, J.B., Kim, Y.H., Kim, S.H.: Wavelength-tunable and shape-reconfigurable photonic capsule resonators containing cholesteric liquid crystals. Sci. Adv. 4(6), 8276 (2018)
CrossRef Google scholar
[33]
Guo, D.Y., Chen, C.W., Li, C.C., Jau, H.C., Lin, K.H., Feng, T.M., Wang, C.T., Bunning, T.J., Khoo, I.C., Lin, T.H.: Reconfiguration of three-dimensional liquid-crystalline photonic crystals by electrostriction. Nat. Mater. 19(1), 94–101 (2020)
CrossRef Google scholar
[34]
Khoo, I.C.: Cholesteric and blue-phase liquid photonic crystals for nonlinear optics and ultrafast laser pulse modulations. Liquid Cryst. Rev. 6(1), 53–77 (2018)
CrossRef Google scholar
[35]
Gao, Y., Song, D., Chu, S., Chen, Z.: Artificial graphene and related photonic lattices generated with a simple method. IEEE Photonics J. 6(6), 1–6 (2014)
CrossRef Google scholar
[36]
Song, D., Paltoglou, V., Liu, S., Zhu, Y., Gallardo, D., Tang, L., Xu, J., Ablowitz, M., Efremidis, N.K., Chen, Z.: Unveiling pseudospin and angular momentum in photonic graphene. Nat. Commun. 6(1), 6272 (2015)
CrossRef Google scholar
[37]
Wang, B., Rodríguez, J., Cappelli, M.A.: 3d woodpile structure tunable plasma photonic crystal. Plasma Sources Sci. Technol. 28(2), 01–02 (2019)
CrossRef Google scholar
[38]
Zhang, W., Wang, H., Zhao, X., Lan, W.: Bandgap-tunable device realized by ternary plasma photonic crystals arrays. Phys. Plasmas. 27(6) (2020)
CrossRef Google scholar
[39]
Li, J., Wang, Y., Zhou, Z., Yao, J., Liu, J., Lan, Z., Yuan, C.: Experimental observations of communication in blackout, topological waveguiding and dirac zero-index property in plasma sheath. Nanophotonics 12(10), 1847–1856 (2023)
CrossRef Google scholar
[40]
Li, J., Yao, J., Yuan, C., Wang, Y., Zhou, Z., Zhang, J.: Tunable transmission near dirac-like point in the designed plasma photonic crystal. Phys. Plasmas. 29(3) (2022)
CrossRef Google scholar
[41]
Liu, Z.J., Wang, W.C., Zhang, L., Wang, S., Yang, D.Z., Zhang, S., Tang, K.: Electrical and optical characteristics of diffuse nanosecond pulsed discharge plasma using a needle-array electrode in atmospheric air. J. Appl. Phys. 115(20) (2014)
CrossRef Google scholar
[42]
Takaki, K., Hosokawa, M., Sasaki, T., Mukaigawa, S., Fujiwara, T.: Production of atmospheric-pressure glow discharge in nitrogen using needle-array electrode. Appl. Phys. Lett. 86(15) (2005)
CrossRef Google scholar
[43]
Monchocé, S., Kahaly, S., Leblanc, A., Videau, L., Combis, P., Réau, F., Garzella, D., D’Oliveira, P., Martin, P., Quéré, F.: Optically controlled solid-density transient plasma gratings. Phys. Rev. Lett. 112(14), 145008 (2014)
CrossRef Google scholar
[44]
Yu, L.L., Zhao, Y., Qian, L.J., Chen, M., Weng, S.M., Sheng, Z.M., Jaroszynski, D., Mori, W., Zhang, J.: Plasma optical modulators for intense lasers. Nat. Commun. 7(1), 11893 (2016)
CrossRef Google scholar
[45]
Tan, H., Jin, C., Zhuge, L., Wu, X.: Simulation on the photonic bandgap of 1-d plasma photonic crystals. IEEE Trans. Plasma Sci. 46(3), 539–544 (2018)
CrossRef Google scholar
[46]
Shuqun, W., Yuxiu, C., Minge, L., Lu, Y., Zhang, C., Shaobin, L.: Numerical study on the modulation of thz wave propagation by collisional microplasma photonic crystal. Plasma Sci. Technol 22(11), 115402 (2020)
CrossRef Google scholar
[47]
Kang, Y., Zhong, H., Belić, M.R., Tian, Y., Jin, K., Zhang, Y., Li, F., Zhang, Y.: Conical diffraction from approximate dirac cone states in a superhoneycomb lattice. Ann. Phys. 531(11), 1900295 (2019)
CrossRef Google scholar
[48]
Zhang, Y., Su, Y., He, L.: Quantum interferences of pseudospinmediated atomic-scale vortices in monolayer graphene. Nano Lett. 21(6), 2526–2531 (2021)
CrossRef Google scholar
[49]
Topolancik, J., Ilic, R., Vollmer, F.: Experimental observation of strong photon localization in disordered photonic crystal waveguides. arXiv preprint arXiv: 0706.3040 (2007)
CrossRef Google scholar
[50]
Li, J., Chu, R.L., Jain, J.K., Shen, S.Q.: Topological anderson insulator. Phys. Rev. Lett. 102(13), 136806 (2009)
CrossRef Google scholar
[51]
Lee, M., Callard, S., Seassal, C., Jeon, H.: Taming of random lasers. Nat. Photonics 13(7), 445–448 (2019)
CrossRef Google scholar
[52]
Popoff, S., Lerosey, G., Fink, M., Boccara, A.C., Gigan, S.: Image transmission through an opaque material. Nat. Commun. 1(1), 81 (2010)
CrossRef Google scholar
[53]
Vynck, K., Burresi, M., Riboli, F., Wiersma, D.S.: Photon management in two-dimensional disordered media. Nat. Mater. 11(12), 1017–1022 (2012)
CrossRef Google scholar
[54]
Wu, Z., Zheng, Y.: Moiré chiral metamaterials. Adv. Opt. Mater. 5(16), 1700034 (2017)
CrossRef Google scholar
[55]
Lou, B., Zhao, N., Minkov, M., Guo, C., Orenstein, M., Fan, S.: Theory for twisted bilayer photonic crystal slabs. Phys. Rev. Lett. 126(13), 136101 (2021)
CrossRef Google scholar
[56]
Wang, P., Zheng, Y., Chen, X., Huang, C., Kartashov, Y.V., Torner, L., Konotop, V.V., Ye, F.: Localization and delocalization of light in photonic moiré lattices. Nature 577(7788), 42–46 (2020)
CrossRef Google scholar
[57]
Gómez-Urrea, H., Ospina-Medina, M., Correa-Abad, J., Mora-Ramos, M., Caro-Lopera, F.: Tunable band structure in 2d bravais- moiré photonic crystal lattices. Opt. Commun. 459, 125081 (2020)
CrossRef Google scholar
[58]
Oudich, M., Su, G., Deng, Y., Benalcazar, W., Huang, R., Gerard, N.J., Lu, M., Zhan, P., Jing, Y.: Photonic analog of bilayer graphene. Phys. Rev. B 103(21), 214311 (2021)
CrossRef Google scholar
[59]
Haldane, F.D.M., Raghu, S.: Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. arXiv preprint cond-mat/0503588 (2005)
[60]
Wang, Z., Chong, Y., Joannopoulos, J.D., Soljačić, M.: Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett. 100(1), 013905 (2008)
CrossRef Google scholar
[61]
Wang, Z., Chong, Y., Joannopoulos, J.D., Soljačić, M.: Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461(7265), 772–775 (2009)
CrossRef Google scholar
[62]
Leykam, D., Mittal, S., Hafezi, M., Chong, Y.D.: Reconfigurable topological phases in next-nearest-neighbor coupled resonator lattices. Phys. Rev. Lett. 121(2), 023901 (2018)
CrossRef Google scholar
[63]
Ma, T., Khanikaev, A.B., Mousavi, S.H., Shvets, G.: Guiding electromagnetic waves around sharp corners: topologically protected photonic transport in metawaveguides. Phys. Rev. Lett. 114(12), 127401 (2015)
CrossRef Google scholar
[64]
Jianfei, L., Chen, Z., Jingfeng, Y., Chengxun, Y., Ying, W., Zhongxiang, Z., Zhang, J., Kudryavtsev, A.A.: Valley-dependent topological edge states in plasma photonic crystals. Plasma Sci. Technol 25(3), 035001 (2023)
CrossRef Google scholar
[65]
Rosiek, C.A., Arregui, G., Vladimirova, A., Albrechtsen, M., Vosoughi Lahijani, B., Christiansen, R.E., Stobbe, S.: Observation of strong backscattering in valley-hall photonic topological interface modes. Nat. Photonics 17(5), 386–392 (2023)
CrossRef Google scholar
[66]
Gao, Y.F., Jiang, Z., Zhang, L.L., He, L., Zhao, J.: Unidirectional propagation of coupled edge states in sandwich topological photonic crystals. J. Appl. Phys. 124(21), 213107 (2018)
CrossRef Google scholar
[67]
He, L., Gao, Y.F., Jiang, Z., Wang, L.S., Zhou, J., Xu, X.F.: A unidirectional air waveguide basing on coupling of two self-guiding edge modes. Opt. Laser Technol. 108, 265–272 (2018)
CrossRef Google scholar
[68]
He, Y.H., Gao, Y.F., He, Y., Qi, X.F., Si, J.Q., Yang, M., Zhou, S.Y.: Realization of edge and corner states in photonic crystals with kagome lattices through topological insulator generators. Opt. Laser Technol. 161, 109196 (2023)
CrossRef Google scholar
[69]
Jiang, Z., Gao, Y.F., He, L., Sun, J.P., Song, H., Wang, Q.: Manipulation of pseudo-spin guiding and flat bands for topological edge states. Phys. Chem. Chem. Phys. 21(21), 11367–11375 (2019)
CrossRef Google scholar
[70]
Lu, J., Qiu, C., Ke, M., Liu, Z.: Valley vortex states in sonic crystals. Phys. Rev. Lett. 116(9), 093901 (2016)
CrossRef Google scholar
[71]
Lu, J., Qiu, C., Ye, L., Fan, X., Ke, M., Zhang, F., Liu, Z.: Observation of topological valley transport of sound in sonic crystals. Nat. Phys. 13(4), 369–374 (2017)
CrossRef Google scholar
[72]
Kang, Y., Ni, X., Cheng, X., Khanikaev, A.B., Genack, A.Z.: Pseudo-spin-valley coupled edge states in a photonic topological insulator. Nat. Commun. 9(1), 3029 (2018)
CrossRef Google scholar
[73]
Poynting, J.H.: On the transfer of energy in the electromagnetic field. Proc. R. Soc. Lond. 36(228–231), 186–187 (1883)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 The Author(s) 2024
AI Summary AI Mindmap
PDF(3503 KB)

Accesses

Citations

Detail

Sections
Recommended

/