Stereoscopic spatial graphical method of Mueller matrix: Global-Polarization Stokes Ellipsoid

Xinxian Zhang, Jiawei Song, Jiahao Fan, Nan Zeng, Honghui He, Valery V. Tuchin, Hui Ma

PDF(4706 KB)
PDF(4706 KB)
Front. Optoelectron. ›› 2024, Vol. 17 ›› Issue (3) : 29. DOI: 10.1007/s12200-024-00132-4
RESEARCH ARTICLE

Stereoscopic spatial graphical method of Mueller matrix: Global-Polarization Stokes Ellipsoid

Author information +
History +

Abstract

A Mueller matrix covers all the polarization information of the measured sample, however the combination of its 16 elements is sometimes not intuitive enough to describe and identify the key characteristics of polarization changes. Within the Poincaré sphere system, this study achieves a spatial representation of the Mueller matrix: the Global-Polarization Stokes Ellipsoid (GPSE). With the help of Monte Carlo simulations combined with anisotropic tissue models, three basic characteristic parameters of GPSE are proposed and explained, where the V parameter represents polarization maintenance ability, and the E and D parameters represent the degree of anisotropy. Furthermore, based on GPSE system, a dynamic analysis of skeletal muscle dehydration process demonstrates the monitoring effect of GPSE from an application perspective, while confirming its robustness and accuracy.

Graphical abstract

Keywords

Full polarization / Mueller matrix / Tissue characterization / Optical measurement

Cite this article

Download citation ▾
Xinxian Zhang, Jiawei Song, Jiahao Fan, Nan Zeng, Honghui He, Valery V. Tuchin, Hui Ma. Stereoscopic spatial graphical method of Mueller matrix: Global-Polarization Stokes Ellipsoid. Front. Optoelectron., 2024, 17(3): 29 https://doi.org/10.1007/s12200-024-00132-4

References

[1]
He, H., Liao, R., Zeng, N., Li, P., Chen, Z., Liu, X., Ma, H.: Mueller matrix polarimetry—an emerging new tool for characterizing the microstructural feature of complex biological specimen. J. Lightwave Technol. 37(11), 2534–2548 (2019)
CrossRef Google scholar
[2]
Qi, J., Elson, D.S.: Mueller polarimetric imaging for surgical and diagnostic applications: a review. J. Biophotonics 10(8), 950–982 (2017)
CrossRef Google scholar
[3]
Tuchin, V.V.: Polarized light interaction with tissues. J. Biomed. Opt. 21(7), 071114 (2016)
CrossRef Google scholar
[4]
Qiu, L., Pleskow, D.K., Chuttani, R., Vitkin, E., Leyden, J., Ozden, N., Itani, S., Guo, L., Sacks, A., Goldsmith, J.D., Modell, M.D., Hanlon, E.B., Itzkan, I., Perelman, L.T.: Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus. Nat. Med. 16(5), 603–606 (2010)
CrossRef Google scholar
[5]
Gurjar, R.S., Backman, V., Perelman, L.T., Georgakoudi, I., Badizadegan, K., Itzkan, I., Dasari, R.R., Feld, M.S.: Imaging human epithelial properties with polarized light-scattering spectroscopy. Nat. Med. 7(11), 1245–1248 (2001)
CrossRef Google scholar
[6]
Alali, S., Vitkin, A.: Polarized light imaging in biomedicine: emerging Mueller matrix methodologies for bulk tissue assessment. J. Biomed. Opt. 20(6), 061104 (2015)
CrossRef Google scholar
[7]
Shih-Yau, L., Chipman, R.A.: Interpretation of Mueller matrices based on polar decomposition. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 13(5), 1106 (1996)
CrossRef Google scholar
[8]
Ghosh, N., Wood, M.F.G., Vitkin, I.A.: Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence. J. Biomed. Opt. 13(4), 044036 (2008)
CrossRef Google scholar
[9]
He, H., Zeng, N., Du, E., Guo, Y., Li, D., Liao, R., Ma, H.: A possible quantitative Mueller matrix transformation technique for anisotropic scattering media/Eine mögliche quantitative Müller-Matrix-Transformations-Technik für anisotrope streuende Medien. Photon. Lasers Med. 2(2), 129–137 (2013)
CrossRef Google scholar
[10]
Tuchin, V.V., Wang, L.V., Zimnyakov, D.A.: Optical polarization in biomedical applications. Springer, Berlin; New York (2006)
[11]
Lien, C.H., Chen, Z.H., Phan, Q.H.: Birefringence effect studies of collagen formed by nonenzymatic glycation using dual-retarder Mueller polarimetry. J. Biomed. Opt. 27(8), 087001 (2022)
CrossRef Google scholar
[12]
Dong, Y., Wan, J., Si, L., Meng, Y., Dong, Y., Liu, S., He, H., Ma, H.: Deriving polarimetry feature parameters to characterize microstructural features in histological sections of breast tissues. IEEE Trans. Biomed. Eng. 68(3), 881–892 (2021)
CrossRef Google scholar
[13]
Zaffar, M., Pradhan, A.: Assessment of anisotropy of collagen structures through spatial frequencies of Mueller matrix images for cervical pre-cancer detection. Appl. Opt. 59(4), 1237 (2020)
CrossRef Google scholar
[14]
Du, E., He, H., Zeng, N., Sun, M., Guo, Y., Wu, J., Liu, S., Ma, H.: Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues. J. Biomed. Opt. 19(7), 076013 (2014)
CrossRef Google scholar
[15]
Dong, Y., Wan, J., Wang, X., Xue, J.H., Zou, J., He, H., Li, P., Hou, A., Ma, H.: A polarization-imaging-based machine learning framework for quantitative pathological diagnosis of cervical precancerous lesions. IEEE Trans. Med. Imaging 40(12), 3728–3738 (2021)
CrossRef Google scholar
[16]
Ahmad, I., Ahmad, M., Khan, K., Ashraf, S., Ahmad, S., Ikram, M.: Ex vivo characterization of normal and adenocarcinoma colon samples by Mueller matrix polarimetry. J. Biomed. Opt. 20(5), 056012 (2015)
CrossRef Google scholar
[17]
Ivanov, D., Dremin, V., Bykov, A., Borisova, E., Genova, T., Popov, A., Ossikovski, R., Novikova, T., Meglinski, I.: Colon cancer detection by using Poincaré sphere and 2D polarimetric mapping of ex vivo colon samples. J. Biophoton. 13(8), e202000082 (2020)
CrossRef Google scholar
[18]
Le, D.L., Nguyen, D.T., Le, T.H., Phan, Q.H., Pham, T.T.H.: Characterization of healthy and cancerous human skin tissue utilizing Stokes-Mueller polarimetry technique. Opt. Commun. 480, 126460 (2021)
CrossRef Google scholar
[19]
Ushenko, Yu.A., Dubolazov, O.V., Karachevtsev, A.O.: Statistical structure of skin derma Mueller matrix images in the process of cancer changes. Opt. Mem. Neural. Netw. 20(2), 145–154 (2011)
CrossRef Google scholar
[20]
Kim, M., Lee, H.R., Ossikovski, R., Malfait-Jobart, A., Lamarque, D., Novikova, T.: Optical diagnosis of gastric tissue biopsies with Mueller microscopy and statistical analysis. J. Eur. Opt. Soc. Rapid Publ. 18(2), 10 (2022)
CrossRef Google scholar
[21]
Wang, W., Lim, L.G., Srivastava, S., Bok-Yan So, J., Shabbir, A., Liu, Q.: Investigation on the potential of Mueller matrix imaging for digital staining. J. Biophoton. 9(4), 364–375 (2016)
CrossRef Google scholar
[22]
Kodela, R., Vanagala, P.: Polarimetric parameters to categorize normal and malignant thyroid tissue. J. Inst. Electron. Telecommun. Eng. 63(6), 893–897 (2017)
CrossRef Google scholar
[23]
He, H., Sun, M., Zeng, N., Du, E., Liu, S., Guo, Y., Wu, J., He, Y., Ma, H.: Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging. J. Biomed. Opt. 19(10), 106007 (2014)
CrossRef Google scholar
[24]
He, C., Chang, J., Salter, P., Shen, Y., Dai, B., Li, P., Jin, Y., Thodika, S., Li, M., Tariq, A., Wang, J., Antonello, J., Dong, Y., Qi, J., Lin, J., Elson, D., Zhang, M., He, H., Hui Ma, H., Booth, M.: Revealing complex optical phenomena through vectorial metrics. Adv. Photon. 4(2), 026001 (2022)
CrossRef Google scholar
[25]
Wang, Y., He, H., Chang, J., He, C., Liu, S., Li, M., Zeng, N., Wu, J., Ma, H.: Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues. J. Biomed. Opt. 21(7), 071112 (2016)
CrossRef Google scholar
[26]
Chen, B., Li, W., He, H., He, C., Guo, J., Shen, Y., Liu, S., Sun, T., Wu, J., Ma, H.: Analysis and calibration of linear birefringence orientation parameters derived from Mueller matrix for multilayered tissues. Opt. Lasers Eng. 146, 106690 (2021)
CrossRef Google scholar
[27]
Dong, Y., Qi, J., He, H., He, C., Liu, S., Wu, J., Elson, D.S., Ma, H.: Quantitatively characterizing the microstructural features of breast ductal carcinoma tissues in different progression stages by Mueller matrix microscope. Biomed. Opt. Express 8(8), 3643 (2017)
CrossRef Google scholar
[28]
He, C., Chang, J., Hu, Q., Wang, J., Antonello, J., He, H., Liu, S., Lin, J., Dai, B., Elson, D.S., Xi, P., Ma, H., Booth, M.J.: Complex vectorial optics through gradient index lens cascades. Nat. Commun. 10(1), 4264 (2019)
CrossRef Google scholar
[29]
Sun, M., He, H., Zeng, N., Du, E., Guo, Y., Liu, S., Wu, J., He, Y., Ma, H.: Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters. Biomed. Opt. Express 5(12), 4223 (2014)
CrossRef Google scholar
[30]
Song, J., Zeng, N., Guo, W., Guo, J., Ma, H.: Stokes polarization imaging applied for monitoring dynamic tissue optical clearing. Biomed. Opt. Express 12(8), 4821 (2021)
CrossRef Google scholar
[31]
Zhai, H., Sun, Y., He, H., Chen, B., He, C., Wang, Y., Ma, H.: Distinguishing tissue structures via polarization staining images based on different combinations of Mueller matrix polar decomposition parameters. Opt. Lasers Eng. 152, 106955 (2022)
CrossRef Google scholar
[32]
Rodríguez-Núñez, O., Schucht, P., Hewer, E., Novikova, T., Pierangelo, A.: Polarimetric visualization of healthy brain fiber tracts under adverse conditions: ex vivo studies. Biomed. Opt. Express 12(10), 6674 (2021)
CrossRef Google scholar
[33]
Borovkova, M., Bykov, A., Popov, A., Pierangelo, A., Novikova, T., Pahnke, J., Meglinski, I.: Evaluating β-amyloidosis progression in Alzheimer’s disease with Mueller polarimetry. Biomed. Opt. Express 11(8), 4509 (2020)
CrossRef Google scholar
[34]
Zhang, Z., Hao, R., Shao, C., Mi, C., He, H., He, C., Du, E., Liu, S., Wu, J., Ma, H.: Analysis and optimization of aberration induced by oblique incidence for in-vivo tissue polarimetry. Opt. Lett. 48(23), 6136 (2023)
CrossRef Google scholar
[35]
Kunnen, B., Macdonald, C., Doronin, A., Jacques, S., Eccles, M., Meglinski, I.: Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media. J. Biophotonics 8(4), 317–323 (2015)
CrossRef Google scholar
[36]
Chen, Y., Chu, J., Lin, F., Jiang, B., Liu, Y., Huang, B., Zhang, R., Xin, B., Ding, X.: Polarization clustering of biological structures with Mueller matrix parameters. J. Biophoton. 16(2), e202200255 (2023)
CrossRef Google scholar
[37]
Borovkova, M.A., Bykov, A.V., Popov, A., Meglinski, I.V.: Role of scattering and birefringence in phase retardation revealed by locus of Stokes vector on Poincaré sphere. J. Biomed. Opt. 25(5), 1 (2020)
CrossRef Google scholar
[38]
MacKintosh, F.C., Zhu, J.X., Pine, D.J., Weitz, D.A.: Polarization memory of multiply scattered light. Phys. Rev. B Condens. Matter 40(13), 9342–9345 (1989)
CrossRef Google scholar
[39]
Sankaran, V., Walsh, J.T., Maitland, D.J.: Comparative study of polarized light propagation in biologic tissues. J. Biomed. Opt. 7(3), 300 (2002)
CrossRef Google scholar
[40]
Singh, M.D., Vitkin, I.A.: Discriminating turbid media by scatterer size and scattering coefficient using backscattered linearly and circularly polarized light. Biomed. Opt. Express 12(11), 6831 (2021)
CrossRef Google scholar
[41]
Sun, P., Ma, Y., Liu, W., Xu, C., Sun, X.: Experimentally determined characteristics of the degree of polarization of backscattered light from polystyrene sphere suspensions. J. Opt. 15(5), 055708 (2013)
CrossRef Google scholar
[42]
Ossikovski, R., Gil, J.J., San José, I.: Poincaré sphere mapping by Mueller matrices. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 30(11), 2291 (2013)
CrossRef Google scholar
[43]
Azzam, R.M.A.: Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal. Opt. Lett. 2(6), 148 (1978)
CrossRef Google scholar
[44]
Goldstein, D.H.: Mueller matrix dual-rotating retarder polarimeter. Appl. Opt. 31(31), 6676 (1992)
CrossRef Google scholar
[45]
Goldstein, D.H., Chipman, R.A.: Error analysis of a Mueller matrix polarimeter. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 7(4), 693 (1990)
CrossRef Google scholar
[46]
Du, E., He, H., Zeng, N., Guo, Y., Liao, R., He, Y., Ma, H.: Two-dimensional backscattering Mueller matrix of sphere–cylinder birefringence media. J. Biomed. Opt. 17(12), 126016 (2012)
CrossRef Google scholar
[47]
Yun, T., Zeng, N., Li, W., Li, D., Jiang, X., Ma, H.: Monte Carlo simulation of polarized photon scattering in anisotropic media. Opt. Express 17(19), 16590 (2009)
CrossRef Google scholar
[48]
Song, J., Zeng, N., Ma, H., Tuchin, V.V.: A rapid stokes imaging method for characterizing the optical properties of tissue during immersion optical clearing. IEE. J. Sel. Top. Quantum Electron. 29(4), 1–9 (2023)
CrossRef Google scholar
[49]
Liu, Z., Song, J., Fu, Q., Zeng, N., Ma, H.: Study on anisotropy orientation due to well-ordered fibrous biological microstructures. J. Biomed. Opt. 29(5), 052919 (2024)
CrossRef Google scholar
[50]
Song, J., Fu, Q., Zeng, N., Ma, H.: Microstructural characterization of biological tissues based on sequential Stokes polarization images during dehydration. Opt. Lasers Eng. 177, 108142 (2024)
CrossRef Google scholar
[51]
Song, J., Guo, W., Zeng, N., Ma, H.: Polarization phase unwrapping by a dual-wavelength Mueller matrix imaging system. Opt. Lett. 48(8), 2058 (2023)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 The Author(s) 2024
AI Summary AI Mindmap
PDF(4706 KB)

Accesses

Citations

Detail

Sections
Recommended

/