Stereoscopic spatial graphical method of Mueller matrix: Global-Polarization Stokes Ellipsoid
Xinxian Zhang, Jiawei Song, Jiahao Fan, Nan Zeng, Honghui He, Valery V. Tuchin, Hui Ma
Stereoscopic spatial graphical method of Mueller matrix: Global-Polarization Stokes Ellipsoid
A Mueller matrix covers all the polarization information of the measured sample, however the combination of its 16 elements is sometimes not intuitive enough to describe and identify the key characteristics of polarization changes. Within the Poincaré sphere system, this study achieves a spatial representation of the Mueller matrix: the Global-Polarization Stokes Ellipsoid (GPSE). With the help of Monte Carlo simulations combined with anisotropic tissue models, three basic characteristic parameters of GPSE are proposed and explained, where the V parameter represents polarization maintenance ability, and the E and D† parameters represent the degree of anisotropy. Furthermore, based on GPSE system, a dynamic analysis of skeletal muscle dehydration process demonstrates the monitoring effect of GPSE from an application perspective, while confirming its robustness and accuracy.
Full polarization / Mueller matrix / Tissue characterization / Optical measurement
[1] |
He, H., Liao, R., Zeng, N., Li, P., Chen, Z., Liu, X., Ma, H.: Mueller matrix polarimetry—an emerging new tool for characterizing the microstructural feature of complex biological specimen. J. Lightwave Technol. 37(11), 2534–2548 (2019)
CrossRef
Google scholar
|
[2] |
Qi, J., Elson, D.S.: Mueller polarimetric imaging for surgical and diagnostic applications: a review. J. Biophotonics 10(8), 950–982 (2017)
CrossRef
Google scholar
|
[3] |
Tuchin, V.V.: Polarized light interaction with tissues. J. Biomed. Opt. 21(7), 071114 (2016)
CrossRef
Google scholar
|
[4] |
Qiu, L., Pleskow, D.K., Chuttani, R., Vitkin, E., Leyden, J., Ozden, N., Itani, S., Guo, L., Sacks, A., Goldsmith, J.D., Modell, M.D., Hanlon, E.B., Itzkan, I., Perelman, L.T.: Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus. Nat. Med. 16(5), 603–606 (2010)
CrossRef
Google scholar
|
[5] |
Gurjar, R.S., Backman, V., Perelman, L.T., Georgakoudi, I., Badizadegan, K., Itzkan, I., Dasari, R.R., Feld, M.S.: Imaging human epithelial properties with polarized light-scattering spectroscopy. Nat. Med. 7(11), 1245–1248 (2001)
CrossRef
Google scholar
|
[6] |
Alali, S., Vitkin, A.: Polarized light imaging in biomedicine: emerging Mueller matrix methodologies for bulk tissue assessment. J. Biomed. Opt. 20(6), 061104 (2015)
CrossRef
Google scholar
|
[7] |
Shih-Yau, L., Chipman, R.A.: Interpretation of Mueller matrices based on polar decomposition. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 13(5), 1106 (1996)
CrossRef
Google scholar
|
[8] |
Ghosh, N., Wood, M.F.G., Vitkin, I.A.: Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence. J. Biomed. Opt. 13(4), 044036 (2008)
CrossRef
Google scholar
|
[9] |
He, H., Zeng, N., Du, E., Guo, Y., Li, D., Liao, R., Ma, H.: A possible quantitative Mueller matrix transformation technique for anisotropic scattering media/Eine mögliche quantitative Müller-Matrix-Transformations-Technik für anisotrope streuende Medien. Photon. Lasers Med. 2(2), 129–137 (2013)
CrossRef
Google scholar
|
[10] |
Tuchin, V.V., Wang, L.V., Zimnyakov, D.A.: Optical polarization in biomedical applications. Springer, Berlin; New York (2006)
|
[11] |
Lien, C.H., Chen, Z.H., Phan, Q.H.: Birefringence effect studies of collagen formed by nonenzymatic glycation using dual-retarder Mueller polarimetry. J. Biomed. Opt. 27(8), 087001 (2022)
CrossRef
Google scholar
|
[12] |
Dong, Y., Wan, J., Si, L., Meng, Y., Dong, Y., Liu, S., He, H., Ma, H.: Deriving polarimetry feature parameters to characterize microstructural features in histological sections of breast tissues. IEEE Trans. Biomed. Eng. 68(3), 881–892 (2021)
CrossRef
Google scholar
|
[13] |
Zaffar, M., Pradhan, A.: Assessment of anisotropy of collagen structures through spatial frequencies of Mueller matrix images for cervical pre-cancer detection. Appl. Opt. 59(4), 1237 (2020)
CrossRef
Google scholar
|
[14] |
Du, E., He, H., Zeng, N., Sun, M., Guo, Y., Wu, J., Liu, S., Ma, H.: Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues. J. Biomed. Opt. 19(7), 076013 (2014)
CrossRef
Google scholar
|
[15] |
Dong, Y., Wan, J., Wang, X., Xue, J.H., Zou, J., He, H., Li, P., Hou, A., Ma, H.: A polarization-imaging-based machine learning framework for quantitative pathological diagnosis of cervical precancerous lesions. IEEE Trans. Med. Imaging 40(12), 3728–3738 (2021)
CrossRef
Google scholar
|
[16] |
Ahmad, I., Ahmad, M., Khan, K., Ashraf, S., Ahmad, S., Ikram, M.: Ex vivo characterization of normal and adenocarcinoma colon samples by Mueller matrix polarimetry. J. Biomed. Opt. 20(5), 056012 (2015)
CrossRef
Google scholar
|
[17] |
Ivanov, D., Dremin, V., Bykov, A., Borisova, E., Genova, T., Popov, A., Ossikovski, R., Novikova, T., Meglinski, I.: Colon cancer detection by using Poincaré sphere and 2D polarimetric mapping of ex vivo colon samples. J. Biophoton. 13(8), e202000082 (2020)
CrossRef
Google scholar
|
[18] |
Le, D.L., Nguyen, D.T., Le, T.H., Phan, Q.H., Pham, T.T.H.: Characterization of healthy and cancerous human skin tissue utilizing Stokes-Mueller polarimetry technique. Opt. Commun. 480, 126460 (2021)
CrossRef
Google scholar
|
[19] |
Ushenko, Yu.A., Dubolazov, O.V., Karachevtsev, A.O.: Statistical structure of skin derma Mueller matrix images in the process of cancer changes. Opt. Mem. Neural. Netw. 20(2), 145–154 (2011)
CrossRef
Google scholar
|
[20] |
Kim, M., Lee, H.R., Ossikovski, R., Malfait-Jobart, A., Lamarque, D., Novikova, T.: Optical diagnosis of gastric tissue biopsies with Mueller microscopy and statistical analysis. J. Eur. Opt. Soc. Rapid Publ. 18(2), 10 (2022)
CrossRef
Google scholar
|
[21] |
Wang, W., Lim, L.G., Srivastava, S., Bok-Yan So, J., Shabbir, A., Liu, Q.: Investigation on the potential of Mueller matrix imaging for digital staining. J. Biophoton. 9(4), 364–375 (2016)
CrossRef
Google scholar
|
[22] |
Kodela, R., Vanagala, P.: Polarimetric parameters to categorize normal and malignant thyroid tissue. J. Inst. Electron. Telecommun. Eng. 63(6), 893–897 (2017)
CrossRef
Google scholar
|
[23] |
He, H., Sun, M., Zeng, N., Du, E., Liu, S., Guo, Y., Wu, J., He, Y., Ma, H.: Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging. J. Biomed. Opt. 19(10), 106007 (2014)
CrossRef
Google scholar
|
[24] |
He, C., Chang, J., Salter, P., Shen, Y., Dai, B., Li, P., Jin, Y., Thodika, S., Li, M., Tariq, A., Wang, J., Antonello, J., Dong, Y., Qi, J., Lin, J., Elson, D., Zhang, M., He, H., Hui Ma, H., Booth, M.: Revealing complex optical phenomena through vectorial metrics. Adv. Photon. 4(2), 026001 (2022)
CrossRef
Google scholar
|
[25] |
Wang, Y., He, H., Chang, J., He, C., Liu, S., Li, M., Zeng, N., Wu, J., Ma, H.: Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues. J. Biomed. Opt. 21(7), 071112 (2016)
CrossRef
Google scholar
|
[26] |
Chen, B., Li, W., He, H., He, C., Guo, J., Shen, Y., Liu, S., Sun, T., Wu, J., Ma, H.: Analysis and calibration of linear birefringence orientation parameters derived from Mueller matrix for multilayered tissues. Opt. Lasers Eng. 146, 106690 (2021)
CrossRef
Google scholar
|
[27] |
Dong, Y., Qi, J., He, H., He, C., Liu, S., Wu, J., Elson, D.S., Ma, H.: Quantitatively characterizing the microstructural features of breast ductal carcinoma tissues in different progression stages by Mueller matrix microscope. Biomed. Opt. Express 8(8), 3643 (2017)
CrossRef
Google scholar
|
[28] |
He, C., Chang, J., Hu, Q., Wang, J., Antonello, J., He, H., Liu, S., Lin, J., Dai, B., Elson, D.S., Xi, P., Ma, H., Booth, M.J.: Complex vectorial optics through gradient index lens cascades. Nat. Commun. 10(1), 4264 (2019)
CrossRef
Google scholar
|
[29] |
Sun, M., He, H., Zeng, N., Du, E., Guo, Y., Liu, S., Wu, J., He, Y., Ma, H.: Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters. Biomed. Opt. Express 5(12), 4223 (2014)
CrossRef
Google scholar
|
[30] |
Song, J., Zeng, N., Guo, W., Guo, J., Ma, H.: Stokes polarization imaging applied for monitoring dynamic tissue optical clearing. Biomed. Opt. Express 12(8), 4821 (2021)
CrossRef
Google scholar
|
[31] |
Zhai, H., Sun, Y., He, H., Chen, B., He, C., Wang, Y., Ma, H.: Distinguishing tissue structures via polarization staining images based on different combinations of Mueller matrix polar decomposition parameters. Opt. Lasers Eng. 152, 106955 (2022)
CrossRef
Google scholar
|
[32] |
Rodríguez-Núñez, O., Schucht, P., Hewer, E., Novikova, T., Pierangelo, A.: Polarimetric visualization of healthy brain fiber tracts under adverse conditions: ex vivo studies. Biomed. Opt. Express 12(10), 6674 (2021)
CrossRef
Google scholar
|
[33] |
Borovkova, M., Bykov, A., Popov, A., Pierangelo, A., Novikova, T., Pahnke, J., Meglinski, I.: Evaluating β-amyloidosis progression in Alzheimer’s disease with Mueller polarimetry. Biomed. Opt. Express 11(8), 4509 (2020)
CrossRef
Google scholar
|
[34] |
Zhang, Z., Hao, R., Shao, C., Mi, C., He, H., He, C., Du, E., Liu, S., Wu, J., Ma, H.: Analysis and optimization of aberration induced by oblique incidence for in-vivo tissue polarimetry. Opt. Lett. 48(23), 6136 (2023)
CrossRef
Google scholar
|
[35] |
Kunnen, B., Macdonald, C., Doronin, A., Jacques, S., Eccles, M., Meglinski, I.: Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media. J. Biophotonics 8(4), 317–323 (2015)
CrossRef
Google scholar
|
[36] |
Chen, Y., Chu, J., Lin, F., Jiang, B., Liu, Y., Huang, B., Zhang, R., Xin, B., Ding, X.: Polarization clustering of biological structures with Mueller matrix parameters. J. Biophoton. 16(2), e202200255 (2023)
CrossRef
Google scholar
|
[37] |
Borovkova, M.A., Bykov, A.V., Popov, A., Meglinski, I.V.: Role of scattering and birefringence in phase retardation revealed by locus of Stokes vector on Poincaré sphere. J. Biomed. Opt. 25(5), 1 (2020)
CrossRef
Google scholar
|
[38] |
MacKintosh, F.C., Zhu, J.X., Pine, D.J., Weitz, D.A.: Polarization memory of multiply scattered light. Phys. Rev. B Condens. Matter 40(13), 9342–9345 (1989)
CrossRef
Google scholar
|
[39] |
Sankaran, V., Walsh, J.T., Maitland, D.J.: Comparative study of polarized light propagation in biologic tissues. J. Biomed. Opt. 7(3), 300 (2002)
CrossRef
Google scholar
|
[40] |
Singh, M.D., Vitkin, I.A.: Discriminating turbid media by scatterer size and scattering coefficient using backscattered linearly and circularly polarized light. Biomed. Opt. Express 12(11), 6831 (2021)
CrossRef
Google scholar
|
[41] |
Sun, P., Ma, Y., Liu, W., Xu, C., Sun, X.: Experimentally determined characteristics of the degree of polarization of backscattered light from polystyrene sphere suspensions. J. Opt. 15(5), 055708 (2013)
CrossRef
Google scholar
|
[42] |
Ossikovski, R., Gil, J.J., San José, I.: Poincaré sphere mapping by Mueller matrices. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 30(11), 2291 (2013)
CrossRef
Google scholar
|
[43] |
Azzam, R.M.A.: Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal. Opt. Lett. 2(6), 148 (1978)
CrossRef
Google scholar
|
[44] |
Goldstein, D.H.: Mueller matrix dual-rotating retarder polarimeter. Appl. Opt. 31(31), 6676 (1992)
CrossRef
Google scholar
|
[45] |
Goldstein, D.H., Chipman, R.A.: Error analysis of a Mueller matrix polarimeter. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 7(4), 693 (1990)
CrossRef
Google scholar
|
[46] |
Du, E., He, H., Zeng, N., Guo, Y., Liao, R., He, Y., Ma, H.: Two-dimensional backscattering Mueller matrix of sphere–cylinder birefringence media. J. Biomed. Opt. 17(12), 126016 (2012)
CrossRef
Google scholar
|
[47] |
Yun, T., Zeng, N., Li, W., Li, D., Jiang, X., Ma, H.: Monte Carlo simulation of polarized photon scattering in anisotropic media. Opt. Express 17(19), 16590 (2009)
CrossRef
Google scholar
|
[48] |
Song, J., Zeng, N., Ma, H., Tuchin, V.V.: A rapid stokes imaging method for characterizing the optical properties of tissue during immersion optical clearing. IEE. J. Sel. Top. Quantum Electron. 29(4), 1–9 (2023)
CrossRef
Google scholar
|
[49] |
Liu, Z., Song, J., Fu, Q., Zeng, N., Ma, H.: Study on anisotropy orientation due to well-ordered fibrous biological microstructures. J. Biomed. Opt. 29(5), 052919 (2024)
CrossRef
Google scholar
|
[50] |
Song, J., Fu, Q., Zeng, N., Ma, H.: Microstructural characterization of biological tissues based on sequential Stokes polarization images during dehydration. Opt. Lasers Eng. 177, 108142 (2024)
CrossRef
Google scholar
|
[51] |
Song, J., Guo, W., Zeng, N., Ma, H.: Polarization phase unwrapping by a dual-wavelength Mueller matrix imaging system. Opt. Lett. 48(8), 2058 (2023)
CrossRef
Google scholar
|
/
〈 | 〉 |