Exceptional point enhanced nanoparticle detection in deformed Reuleaux-triangle microcavity

Jinhao Fei, Xiaobei Zhang, Qi Zhang, Yong Yang, Zijie Wang, Chuanlu Deng, Yi Huang, Tingyun Wang

PDF(4171 KB)
PDF(4171 KB)
Front. Optoelectron. ›› 2024, Vol. 17 ›› Issue (3) : 27. DOI: 10.1007/s12200-024-00131-5
RESEARCH ARTICLE

Exceptional point enhanced nanoparticle detection in deformed Reuleaux-triangle microcavity

Author information +
History +

Abstract

In this paper, we propose a deformed Reuleaux-triangle resonator (RTR) to form exceptional point (EP) which results in the detection sensitivity enhancement of nanoparticle. After introducing single nanoparticle to the deformed RTR at EP, frequency splitting obtains an enhancement of more than 6 times compared with non-deformed RTR. In addition, EP induced a result that the far field pattern of chiral mode responses significantly to external perturbation, corresponding to the change in internal chirality. Therefore, single nanoparticle with far distance of more than 4000 nm can be detected by measuring the variation of far field directional emission. Compared to traditional frequency splitting, the far field pattern produced in deformed RTR provides a cost-effective and convenient path to detect single nanoparticle at a long distance, without using tunable laser and external coupler. Our structure indicates great potential in high sensitivity sensor and label-free detector.

Graphical abstract

Keywords

Exceptional point / Deformed microcavity / Nanoparticle detection / Far-field pattern

Cite this article

Download citation ▾
Jinhao Fei, Xiaobei Zhang, Qi Zhang, Yong Yang, Zijie Wang, Chuanlu Deng, Yi Huang, Tingyun Wang. Exceptional point enhanced nanoparticle detection in deformed Reuleaux-triangle microcavity. Front. Optoelectron., 2024, 17(3): 27 https://doi.org/10.1007/s12200-024-00131-5

References

[1]
Yang, Y., Wang, Z.J., Zhang, X.B., Zhang, Q., Wang, T.: Recent progress of in-fiber WGM microsphere resonator. Front Optoelectron. 16(1), 10 (2023)
CrossRef Google scholar
[2]
Ouyang, X., Liu, T., Zhang, Y., He, J., He, Z., Zhang, A.P., Tam, H.Y.: Ultrasensitive optofluidic enzyme-linked immunosorbent assay by on-chip integrated polymer whispering-gallery-mode microlaser sensors. Lab Chip 20(14), 2438–2446 (2020)
CrossRef Google scholar
[3]
Gao, X., Li, J., Hao, Z., Bo, F., Hu, C., Wang, J., Liu, Z., Li, Z.Y., Zhang, G., Xu, J.: Vertical microgoblet resonator with high sensitivity fabricated by direct laser writing on a Si substrate. J. Appl. Phys. 121(6), 064502 (2017)
CrossRef Google scholar
[4]
Wu, Y., Duan, B., Li, C., Yang, D.: Multimode sensing based on optical microcavities. Front Optoelectron. 16(1), 29 (2023)
CrossRef Google scholar
[5]
Vanier, F., Cote, F., Amraoui, M.E., Messaddeq, Y., Peter, Y.A., Rochette, M.: Low-threshold lasing at 1975 nm in thulium-doped tellurite glass microspheres. Opt. Lett. 40(22), 5227–5230 (2015)
CrossRef Google scholar
[6]
Lee, Y.H., Park, H., Kim, I., Park, S.J., Rim, S., Park, B.J., Kim, M., Kim, Y., Kim, M.K., Han, W.S., Kim, H., Park, H., Choi, M.: Shape-tailored whispering gallery microcavity lasers designed by transformation optics. Photon. Res. 11(9), A35–A43 (2023)
CrossRef Google scholar
[7]
Jiang, F., Shao, L., Zhang, X., Yi, X., Wiersig, J., Wang, L., Gong, Q., Lončar, M., Yang, L., Xiao, Y.F.: Chaos-assisted broadband momentum transformation in optical microresonators. Science 358(6361), 344–347 (2017)
CrossRef Google scholar
[8]
Olivares, S.: Quantum optics in the phase space. Eur. Phys. J. Spec. Top. 203(1), 3–24 (2012)
CrossRef Google scholar
[9]
Lin, G., Chembo, Y.K.: On the dispersion management of fluorite whispering-gallery mode resonators for Kerr optical frequency comb generation in the telecom and mid-infrared range. Opt. Express 23(2), 1594–1604 (2015)
CrossRef Google scholar
[10]
Ma, C.G., Xiao, J.L., Xiao, X., Yang, Y.D., Huang, Y.Z.: Chaotic microlasers caused by internal mode interaction for random number generation. Light Sci. Appl. 11(1), 187 (2022)
CrossRef Google scholar
[11]
Liu, P.F., Wen, H., Ren, L.H., Shi, L., Zhang, X.: χ(2) nonlinear photonics in integrated microresonators. Front Optoelectron. 16(1), 18 (2023)
CrossRef Google scholar
[12]
Wiersig, J.: Structure of whispering-gallery modes in optical microdisks perturbed by nanoparticles. Phys. Rev. A 84(6), 063828 (2011)
CrossRef Google scholar
[13]
Gwak, S., Kim, H., Yu, H.H., Ryu, J., Kim, C.M., Yi, C.H.: Rayleigh scatterer-induced steady exceptional points of stable-island modes in a deformed optical microdisk. Opt. Lett. 46(12), 2980–2983 (2021)
CrossRef Google scholar
[14]
Wiersig, J., Kim, W., Hentschel, M.: Asymmetric scattering and nonorthogonal mode patterns in optical microspirals. Phys. Rev. A 78(5), 053809 (2008)
CrossRef Google scholar
[15]
Wang, Z.J., Zhang, X.B., Zhang, Q., Chen, Y., Wang, Y., Yu, Y., Yang, Y., Wang, T.: Dominated mode switching and nanoparticle detection at exceptional points. J. Opt. Soc. Am. B 40(1), 108–114 (2022)
CrossRef Google scholar
[16]
Schawlow, L., Townes, H.: Parity-time-symmetric microring lasers. Science 10, 588–694 (2014)
[17]
Wang, W., Liu, S., Gu, Z., Wang, Y.: Chirality-enabled unidirectional light emission and nanoparticle detection in parity-time-symmetric microcavity. Phys. Rev. A (Coll. Park) 101(1), 013833 (2020)
CrossRef Google scholar
[18]
Kwak, H., Shin, Y., Moon, S., Lee, S.B., Yang, J., An, K.: Nonlinear resonance-assisted tunneling induced by microcavity deformation. Sci. Rep. 5(1), 9010 (2015)
CrossRef Google scholar
[19]
Fritzsch, F., Ketzmerick, R., Backer, A.: Resonance-assisted tunneling in deformed optical microdisks with a mixed phase space. Phys. Rev. E 100(4), 042219 (2019)
CrossRef Google scholar
[20]
Chen, W., Kaya Özdemir, Ş., Zhao, G., Wiersig, J., Yang, L.: Exceptional points enhance sensing in an optical microcavity. Nature 548(7666), 192–196 (2017)
CrossRef Google scholar
[21]
Shen, Z.Z., Tang, M., Chen, L.Y., Huang, Y.Z.: Unidirectional emission and nanoparticle detection in a deformed circular square resonator. Opt. Express 29(2), 1666–1677 (2021)
CrossRef Google scholar
[22]
Zhang, N., Gu, Z.Y., Liu, S., Wang, Y., Wang, S., Duan, Z., Sun, W., Xiao, Y.F., Xiao, S., Song, Q.: Far-field single nanoparticle detection and sizing. Optica 4(9), 1151–1156 (2017)
CrossRef Google scholar
[23]
Wiersig, J.: Chiral and nonorthogonal eigenstate pairs in open quantum systems with weak backscattering between counter-propagating traveling waves. Phys. Rev. A 89(1), 012119 (2014)
CrossRef Google scholar
[24]
Peter, J., Kailasnath, M., Anand, V.R., Vallabhan, C.P.G., Mujeeb, A.: Control of directional emission of resonance modes in an asymmetric cylindrical microcavity. Opt. Laser Technol. 105, 1–3 (2018)
CrossRef Google scholar
[25]
Alkhazragi, O., Dong, M., Chen, L., Liang, D., Ng, T.K., Zhang, J., Bagci, H., Ooi, B.S.: Modifying the coherence of vertical-cavity surface-emitting lasers using chaotic cavities. Optica 10(2), 191–199 (2023)
CrossRef Google scholar
[26]
Wiersig, J., Hentschel, M.: Combining directional light output and ultralow loss in deformed microdisks. Phys. Rev. Lett. 100(3), 033901 (2008)
CrossRef Google scholar
[27]
Kim, M., Kwon, K., Shim, J., Jung, Y., Yu, K.: Partially directional microdisk laser with two Rayleigh scatterers. Opt. Lett. 39(8), 2423–2426 (2014)
CrossRef Google scholar
[28]
Yu, H., Yi, H., Kim, M.: Mechanism of Q-spoiling in deformed optical microcavities. Opt. Express 23(9), 11054–11062 (2015)
CrossRef Google scholar
[29]
Wang, W., Chen, Y.L., Shen, Z., Yang, K., Sheng, M.W., Hao, Y.Z., Yang, Y., Xiao, J.L., Huang, Y.Z.: Unidirectional light emission in a deformed circular-side triangular microresonator. Opt. Express 31(9), 14560–14569 (2023)
CrossRef Google scholar
[30]
Gao, A., Yang, C., Chen, L., Zhang, R., Luo, Q., Wang, W., Cao, Q., Hao, Z., Bo, F., Zhang, G., Xu, J.: Directional emission in X-cut lithium niobate microresonators without chaos dynamics. Photon. Res. 10(2), 401–406 (2022)
CrossRef Google scholar
[31]
Liu, S., Wiersig, J., Sun, Z., Fan, Y., Ge, L., Yang, J., Xiao, S., Song, Q., Cao, H.: Transporting the optical chirality through the dynamical barriers in optical microcavities. Laser Photonics Rev. 12(10), 1800027 (2018)
CrossRef Google scholar
[32]
Wen, H., Ren, L.H., Shi, L., Zhang, X.: Parity-time symmetry in monolithically integrated graphene-assisted microresonators. Opt. Express 30(2), 2112–2121 (2022)
CrossRef Google scholar
[33]
Peng, B., Ozdemir, S.K., Liertzer, M., Chen, W., Kramer, J., Yılmaz, H., Wiersig, J., Rotter, S., Yang, L.: Chiral modes and directional lasing at exceptional points. Proc. Natl. Acad. Sci. U.S.A. 113(25), 6845–6850 (2016)
CrossRef Google scholar
[34]
Kneissl, M., Teepe, M., Miyashita, N., Johnson, N., Chern, G., Chang, R.: Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission. APL Photonics 84(14), 2485–2487 (2004)
CrossRef Google scholar
[35]
Ge, L., Sarma, R., Cao, H.: Rotation-induced evolution of far-field emission patterns of deformed microdisk cavities. Optica 2(4), 323–328 (2015)
CrossRef Google scholar
[36]
Yang, J., Saab, W., Liu, Y., Ben-Tzvi, P.: Reuleaux triangle-based two degrees of freedom bipedal robot. Robotics 10(4), 15 (2021)
CrossRef Google scholar
[37]
Gwak, S., Ryu, J., Kim, H., Yu, H.H., Kim, C.M., Yi, C.H.: Farfield correlations verifying non-Hermitian degeneracy of optical modes. Phys. Rev. Lett. 129(7), 6 (2022)
CrossRef Google scholar
[38]
Cheng, H., Dong, M., Tan, Q., Meng, L., Cai, Y., Jiang, J., Yang, W., Zhong, H., Wang, L.: Broadband mid-IR antireflective Reuleaux-triangle-shaped hole array on germanium. Chin. Opt. Lett. 17(12), 4 (2019)
CrossRef Google scholar
[39]
Frateschi, N.C., Levi, A.F.J.: The spectrum of microdisk lasers. J. Appl. Phys. 80(2), 644–653 (1996)
CrossRef Google scholar
[40]
Hentschel, M., Schomerus, H., Schubert, R.: Husimi functions at dielectric interfaces: inside-outside duality for optical systems and beyond. Europhys. Lett. 62(5), 636–642 (2003)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 The Author(s) 2024
AI Summary AI Mindmap
PDF(4171 KB)

Accesses

Citations

Detail

Sections
Recommended

/