Exceptional point enhanced nanoparticle detection in deformed Reuleaux-triangle microcavity
Jinhao Fei, Xiaobei Zhang, Qi Zhang, Yong Yang, Zijie Wang, Chuanlu Deng, Yi Huang, Tingyun Wang
Exceptional point enhanced nanoparticle detection in deformed Reuleaux-triangle microcavity
In this paper, we propose a deformed Reuleaux-triangle resonator (RTR) to form exceptional point (EP) which results in the detection sensitivity enhancement of nanoparticle. After introducing single nanoparticle to the deformed RTR at EP, frequency splitting obtains an enhancement of more than 6 times compared with non-deformed RTR. In addition, EP induced a result that the far field pattern of chiral mode responses significantly to external perturbation, corresponding to the change in internal chirality. Therefore, single nanoparticle with far distance of more than 4000 nm can be detected by measuring the variation of far field directional emission. Compared to traditional frequency splitting, the far field pattern produced in deformed RTR provides a cost-effective and convenient path to detect single nanoparticle at a long distance, without using tunable laser and external coupler. Our structure indicates great potential in high sensitivity sensor and label-free detector.
Exceptional point / Deformed microcavity / Nanoparticle detection / Far-field pattern
[1] |
Yang, Y., Wang, Z.J., Zhang, X.B., Zhang, Q., Wang, T.: Recent progress of in-fiber WGM microsphere resonator. Front Optoelectron. 16(1), 10 (2023)
CrossRef
Google scholar
|
[2] |
Ouyang, X., Liu, T., Zhang, Y., He, J., He, Z., Zhang, A.P., Tam, H.Y.: Ultrasensitive optofluidic enzyme-linked immunosorbent assay by on-chip integrated polymer whispering-gallery-mode microlaser sensors. Lab Chip 20(14), 2438–2446 (2020)
CrossRef
Google scholar
|
[3] |
Gao, X., Li, J., Hao, Z., Bo, F., Hu, C., Wang, J., Liu, Z., Li, Z.Y., Zhang, G., Xu, J.: Vertical microgoblet resonator with high sensitivity fabricated by direct laser writing on a Si substrate. J. Appl. Phys. 121(6), 064502 (2017)
CrossRef
Google scholar
|
[4] |
Wu, Y., Duan, B., Li, C., Yang, D.: Multimode sensing based on optical microcavities. Front Optoelectron. 16(1), 29 (2023)
CrossRef
Google scholar
|
[5] |
Vanier, F., Cote, F., Amraoui, M.E., Messaddeq, Y., Peter, Y.A., Rochette, M.: Low-threshold lasing at 1975 nm in thulium-doped tellurite glass microspheres. Opt. Lett. 40(22), 5227–5230 (2015)
CrossRef
Google scholar
|
[6] |
Lee, Y.H., Park, H., Kim, I., Park, S.J., Rim, S., Park, B.J., Kim, M., Kim, Y., Kim, M.K., Han, W.S., Kim, H., Park, H., Choi, M.: Shape-tailored whispering gallery microcavity lasers designed by transformation optics. Photon. Res. 11(9), A35–A43 (2023)
CrossRef
Google scholar
|
[7] |
Jiang, F., Shao, L., Zhang, X., Yi, X., Wiersig, J., Wang, L., Gong, Q., Lončar, M., Yang, L., Xiao, Y.F.: Chaos-assisted broadband momentum transformation in optical microresonators. Science 358(6361), 344–347 (2017)
CrossRef
Google scholar
|
[8] |
Olivares, S.: Quantum optics in the phase space. Eur. Phys. J. Spec. Top. 203(1), 3–24 (2012)
CrossRef
Google scholar
|
[9] |
Lin, G., Chembo, Y.K.: On the dispersion management of fluorite whispering-gallery mode resonators for Kerr optical frequency comb generation in the telecom and mid-infrared range. Opt. Express 23(2), 1594–1604 (2015)
CrossRef
Google scholar
|
[10] |
Ma, C.G., Xiao, J.L., Xiao, X., Yang, Y.D., Huang, Y.Z.: Chaotic microlasers caused by internal mode interaction for random number generation. Light Sci. Appl. 11(1), 187 (2022)
CrossRef
Google scholar
|
[11] |
Liu, P.F., Wen, H., Ren, L.H., Shi, L., Zhang, X.: χ(2) nonlinear photonics in integrated microresonators. Front Optoelectron. 16(1), 18 (2023)
CrossRef
Google scholar
|
[12] |
Wiersig, J.: Structure of whispering-gallery modes in optical microdisks perturbed by nanoparticles. Phys. Rev. A 84(6), 063828 (2011)
CrossRef
Google scholar
|
[13] |
Gwak, S., Kim, H., Yu, H.H., Ryu, J., Kim, C.M., Yi, C.H.: Rayleigh scatterer-induced steady exceptional points of stable-island modes in a deformed optical microdisk. Opt. Lett. 46(12), 2980–2983 (2021)
CrossRef
Google scholar
|
[14] |
Wiersig, J., Kim, W., Hentschel, M.: Asymmetric scattering and nonorthogonal mode patterns in optical microspirals. Phys. Rev. A 78(5), 053809 (2008)
CrossRef
Google scholar
|
[15] |
Wang, Z.J., Zhang, X.B., Zhang, Q., Chen, Y., Wang, Y., Yu, Y., Yang, Y., Wang, T.: Dominated mode switching and nanoparticle detection at exceptional points. J. Opt. Soc. Am. B 40(1), 108–114 (2022)
CrossRef
Google scholar
|
[16] |
Schawlow, L., Townes, H.: Parity-time-symmetric microring lasers. Science 10, 588–694 (2014)
|
[17] |
Wang, W., Liu, S., Gu, Z., Wang, Y.: Chirality-enabled unidirectional light emission and nanoparticle detection in parity-time-symmetric microcavity. Phys. Rev. A (Coll. Park) 101(1), 013833 (2020)
CrossRef
Google scholar
|
[18] |
Kwak, H., Shin, Y., Moon, S., Lee, S.B., Yang, J., An, K.: Nonlinear resonance-assisted tunneling induced by microcavity deformation. Sci. Rep. 5(1), 9010 (2015)
CrossRef
Google scholar
|
[19] |
Fritzsch, F., Ketzmerick, R., Backer, A.: Resonance-assisted tunneling in deformed optical microdisks with a mixed phase space. Phys. Rev. E 100(4), 042219 (2019)
CrossRef
Google scholar
|
[20] |
Chen, W., Kaya Özdemir, Ş., Zhao, G., Wiersig, J., Yang, L.: Exceptional points enhance sensing in an optical microcavity. Nature 548(7666), 192–196 (2017)
CrossRef
Google scholar
|
[21] |
Shen, Z.Z., Tang, M., Chen, L.Y., Huang, Y.Z.: Unidirectional emission and nanoparticle detection in a deformed circular square resonator. Opt. Express 29(2), 1666–1677 (2021)
CrossRef
Google scholar
|
[22] |
Zhang, N., Gu, Z.Y., Liu, S., Wang, Y., Wang, S., Duan, Z., Sun, W., Xiao, Y.F., Xiao, S., Song, Q.: Far-field single nanoparticle detection and sizing. Optica 4(9), 1151–1156 (2017)
CrossRef
Google scholar
|
[23] |
Wiersig, J.: Chiral and nonorthogonal eigenstate pairs in open quantum systems with weak backscattering between counter-propagating traveling waves. Phys. Rev. A 89(1), 012119 (2014)
CrossRef
Google scholar
|
[24] |
Peter, J., Kailasnath, M., Anand, V.R., Vallabhan, C.P.G., Mujeeb, A.: Control of directional emission of resonance modes in an asymmetric cylindrical microcavity. Opt. Laser Technol. 105, 1–3 (2018)
CrossRef
Google scholar
|
[25] |
Alkhazragi, O., Dong, M., Chen, L., Liang, D., Ng, T.K., Zhang, J., Bagci, H., Ooi, B.S.: Modifying the coherence of vertical-cavity surface-emitting lasers using chaotic cavities. Optica 10(2), 191–199 (2023)
CrossRef
Google scholar
|
[26] |
Wiersig, J., Hentschel, M.: Combining directional light output and ultralow loss in deformed microdisks. Phys. Rev. Lett. 100(3), 033901 (2008)
CrossRef
Google scholar
|
[27] |
Kim, M., Kwon, K., Shim, J., Jung, Y., Yu, K.: Partially directional microdisk laser with two Rayleigh scatterers. Opt. Lett. 39(8), 2423–2426 (2014)
CrossRef
Google scholar
|
[28] |
Yu, H., Yi, H., Kim, M.: Mechanism of Q-spoiling in deformed optical microcavities. Opt. Express 23(9), 11054–11062 (2015)
CrossRef
Google scholar
|
[29] |
Wang, W., Chen, Y.L., Shen, Z., Yang, K., Sheng, M.W., Hao, Y.Z., Yang, Y., Xiao, J.L., Huang, Y.Z.: Unidirectional light emission in a deformed circular-side triangular microresonator. Opt. Express 31(9), 14560–14569 (2023)
CrossRef
Google scholar
|
[30] |
Gao, A., Yang, C., Chen, L., Zhang, R., Luo, Q., Wang, W., Cao, Q., Hao, Z., Bo, F., Zhang, G., Xu, J.: Directional emission in X-cut lithium niobate microresonators without chaos dynamics. Photon. Res. 10(2), 401–406 (2022)
CrossRef
Google scholar
|
[31] |
Liu, S., Wiersig, J., Sun, Z., Fan, Y., Ge, L., Yang, J., Xiao, S., Song, Q., Cao, H.: Transporting the optical chirality through the dynamical barriers in optical microcavities. Laser Photonics Rev. 12(10), 1800027 (2018)
CrossRef
Google scholar
|
[32] |
Wen, H., Ren, L.H., Shi, L., Zhang, X.: Parity-time symmetry in monolithically integrated graphene-assisted microresonators. Opt. Express 30(2), 2112–2121 (2022)
CrossRef
Google scholar
|
[33] |
Peng, B., Ozdemir, S.K., Liertzer, M., Chen, W., Kramer, J., Yılmaz, H., Wiersig, J., Rotter, S., Yang, L.: Chiral modes and directional lasing at exceptional points. Proc. Natl. Acad. Sci. U.S.A. 113(25), 6845–6850 (2016)
CrossRef
Google scholar
|
[34] |
Kneissl, M., Teepe, M., Miyashita, N., Johnson, N., Chern, G., Chang, R.: Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission. APL Photonics 84(14), 2485–2487 (2004)
CrossRef
Google scholar
|
[35] |
Ge, L., Sarma, R., Cao, H.: Rotation-induced evolution of far-field emission patterns of deformed microdisk cavities. Optica 2(4), 323–328 (2015)
CrossRef
Google scholar
|
[36] |
Yang, J., Saab, W., Liu, Y., Ben-Tzvi, P.: Reuleaux triangle-based two degrees of freedom bipedal robot. Robotics 10(4), 15 (2021)
CrossRef
Google scholar
|
[37] |
Gwak, S., Ryu, J., Kim, H., Yu, H.H., Kim, C.M., Yi, C.H.: Farfield correlations verifying non-Hermitian degeneracy of optical modes. Phys. Rev. Lett. 129(7), 6 (2022)
CrossRef
Google scholar
|
[38] |
Cheng, H., Dong, M., Tan, Q., Meng, L., Cai, Y., Jiang, J., Yang, W., Zhong, H., Wang, L.: Broadband mid-IR antireflective Reuleaux-triangle-shaped hole array on germanium. Chin. Opt. Lett. 17(12), 4 (2019)
CrossRef
Google scholar
|
[39] |
Frateschi, N.C., Levi, A.F.J.: The spectrum of microdisk lasers. J. Appl. Phys. 80(2), 644–653 (1996)
CrossRef
Google scholar
|
[40] |
Hentschel, M., Schomerus, H., Schubert, R.: Husimi functions at dielectric interfaces: inside-outside duality for optical systems and beyond. Europhys. Lett. 62(5), 636–642 (2003)
CrossRef
Google scholar
|
/
〈 | 〉 |