Mode division multiplexing reconstructive spectrometer with an all-fiber photonics lantern

Junrui Liang, Jun Ye, Xiaoya Ma, Yao Lu, Jun Li, Jiangming Xu, Zilun Chen, Jinyong Leng, Zongfu Jiang, Pu Zhou

PDF(2651 KB)
PDF(2651 KB)
Front. Optoelectron. ›› 2024, Vol. 17 ›› Issue (3) : 23. DOI: 10.1007/s12200-024-00130-6
RESEARCH ARTICLE

Mode division multiplexing reconstructive spectrometer with an all-fiber photonics lantern

Author information +
History +

Abstract

This study presents a high-accuracy, all-fiber mode division multiplexing (MDM) reconstructive spectrometer (RS). The MDM was achieved by utilizing a custom-designed 3 × 1 mode-selective photonics lantern to launch distinct spatial modes into the multimode fiber (MMF). This facilitated the information transmission by increasing light scattering processes, thereby encoding the optical spectra more comprehensively into speckle patterns. Spectral resolution of 2 pm and the recovery of 2000 spectral channels were accomplished. Compared to methods employing single-mode excitation and two-mode excitation, the three-mode excitation method reduced the recovered error by 88% and 50% respectively. A resolution enhancement approach based on alternating mode modulation was proposed, reaching the MMF limit for the 3 dB bandwidth of the spectral correlation function. The proof-of-concept study can be further extended to encompass diverse programmable mode excitations. It is not only succinct and highly efficient but also well-suited for a variety of high-accuracy, high-resolution spectral measurement scenarios.

Graphical abstract

Keywords

High-accuracy / Resolution enhancement / Reconstructive spectrometer / Mode division multiplexing / Photonics lantern

Cite this article

Download citation ▾
Junrui Liang, Jun Ye, Xiaoya Ma, Yao Lu, Jun Li, Jiangming Xu, Zilun Chen, Jinyong Leng, Zongfu Jiang, Pu Zhou. Mode division multiplexing reconstructive spectrometer with an all-fiber photonics lantern. Front. Optoelectron., 2024, 17(3): 23 https://doi.org/10.1007/s12200-024-00130-6

References

[1]
Yang, Z. , Albrow-Owen, T. , Cai, W. , Hasan, T. : Miniaturization of optical spectrometers. Science. 371 (6528), eabe0722 (2021)
CrossRef Google scholar
[2]
Li, A. , Yao, C. , Xia, J. , Wang, H. , Cheng, Q. , Penty, R. , Fainman, Y. , Pan, S. : Advances in cost-effective integrated spectrometers. Light Sci. Appl. 11 (1), 174 (2022)
CrossRef Google scholar
[3]
Murray, M.J. , Murray, J.B. , Schermer, R.T. , McKinney, J.D. , Redding, B. : High-speed RF spectral analysis using a Rayleigh backscattering speckle spectrometer. Opt. Express. 31 (13), 20651 (2023)
CrossRef Google scholar
[4]
Wan, Y. , Fan, X. , He, Z. : Review on speckle-based spectrum analyzer. Photonic Sens. 11 (2), 187- 202 (2021)
CrossRef Google scholar
[5]
Dong, K. , Li, J. , Zhang, T. , Gu, F. , Cai, Y. , Gupta, N. , Tang, K. , Javey, A. , Yao, J. , Wu, J. : Single-pixel reconstructive mid-infrared micro-spectrometer. Opt. Express 31 (9), 14367 (2023)
CrossRef Google scholar
[6]
Liu, Z. , Liao, H. , Yang, L. , Du, G. , Wei, L. , Wang, Y. , Chen, Y. : Lightweight computational spectrometer enabled by learned high-correlation optical filters. Opt. Express. 31 (14), 23325 (2023)
CrossRef Google scholar
[7]
Poudel, A. , Bhattarai, P. , Maharjan, R. , Coke, M. , Curry, R.J. , Crowe, I.F. , Dhakal, A. : Spectrometer based on a compact disordered multi-mode interferometer. Opt. Express. 31 (8), 12624 (2023)
CrossRef Google scholar
[8]
Lin, Z. , Yu, S. , Chen, Y. , Cai, W. , Lin, B. , Song, J. , Mitchell, M. , Hammood, M. , Jhoja, J. , Jaeger, N.A.F. , Shi, W. , Chrostowski, L. : High-performance, intelligent, on-chip speckle spectrometer using 2D silicon photonic disordered microring lattice. Optica. 10 (4), 497 (2023)
CrossRef Google scholar
[9]
Zhu, R. , Lei, Y. , Wan, S. , Xiong, Y. , Wang, Y. , Chen, Y. , Xu, F. : Compact fiber-integrated scattering device based on mixedphase TiO2 for speckle spectrometer. Opt. Lett. 47 (7), 1606 (2022)
CrossRef Google scholar
[10]
Redding, B. , Alam, M. , Seifert, M. , Cao, H. : High-resolution and broadband all-fiber spectrometers. Optica 1 (3), 175 (2014)
CrossRef Google scholar
[11]
Coluccelli, N. , Cassinerio, M. , Redding, B. , Cao, H. , Laporta, P. , Galzerano, G. : The optical frequency comb fibre spectrometer. Nat. Commun. 7 (1), 12995 (2016)
CrossRef Google scholar
[12]
Cao, H. : Perspective on speckle spectrometers. J. Opt. 19 (6), 060402 (2017)
CrossRef Google scholar
[13]
Feng, F. , Gan, J. , Chen, P. , Lin, W. , Chen, G. , Min, C. , Yuan, X. , Somekh, M. : AI-assisted spectrometer based on multi-mode optical fiber speckle patterns. Opt. Commun. 522, 128675 (2022)
CrossRef Google scholar
[14]
Demtröder, W. : Laser Spectroscopy. Springer, Berlin Heidelberg (2008)
[15]
Cao, H. , Čižmár, T. , Turtaev, S. , Tyc, T. , Rotter, S. : Controlling light propagation in multimode fibers for imaging, spectroscopy, and beyond. Adv. Opt. Photonics. 15 (2), 524 (2023)
CrossRef Google scholar
[16]
Redding, B. , Popoff, S.M. , Cao, H. : All-fiber spectrometer based on speckle pattern reconstruction. Opt. Express. 21 (5), 6584 (2013)
CrossRef Google scholar
[17]
Liang, J. , Ye, J. , Ke, Y. , Zhang, Y. , Ma, X. , He, J. , Li, J. , Xu, J. , Leng, J. , Zhou, P. : Polarization transmission matrix enabled high-accuracy, large-bandwidth speckle-based reconstructive spectrometer. Appl. Phys. Lett. 124 (7), 071111 (2024)
CrossRef Google scholar
[18]
Li, J. , Yuan, Y. , Cai, Y. : High-precision clock date recovery for optical wireless communications using orbital-angular-momentum-based mode division multiplexing. Opt. Lett. 48 (11), 3107- 3110 (2023)
CrossRef Google scholar
[19]
Geng, Y. , Xiao, Y. , Bai, Q. , Han, X. , Dong, W. , Wang, W. , Xue, J. , Yao, B. , Deng, G. , Zhou, Q. , Qiu, K. , Xu, J. , Zhou, H. : Wavelength-division multiplexing communications using integrated soliton microcomb laser source. Opt. Lett. 47 (23), 6129- 6132 (2022)
CrossRef Google scholar
[20]
Liew, S.F. , Redding, B. , Choma, M.A. , Tagare, H.D. , Cao, H. : Broadband multimode fiber spectrometer. Opt. Lett. 41 (9), 2029 (2016)
CrossRef Google scholar
[21]
Meng, Z. , Li, J. , Yin, C. , Zhang, T. , Yu, Z. , Tang, M. , Tong, W. , Xu, K. : Multimode fiber spectrometer with scalable bandwidth using space-division multiplexing. AIP Adv. 9 (1), 015004 (2019)
CrossRef Google scholar
[22]
Piels, M. , Zibar, D. : Compact silicon multimode waveguide spectrometer with enhanced bandwidth. Sci. Rep. 7 (1), 43454 (2017)
CrossRef Google scholar
[23]
Zheng, Z. , Zhu, S. , Chen, Y. , Chen, H. , Chen, J. : Towards integrated mode-division demultiplexing spectrometer by deep learning. Opto-Electronic Science 1 (11), 220012- 220022 (2022)
CrossRef Google scholar
[24]
Wang, Y. , Zhang, C. , Fu, S. , Zhang, R. , Shen, L. , Tang, M. , Liu, D. : Design of elliptical-core five-mode group selective photonic lantern over the C-band. Opt. Express 27 (20), 27979- 27990 (2019)
CrossRef Google scholar
[25]
Choudhury, D. , McNicholl, D.K. , Repetti, A. , Gris-Sánchez, I. , Li, S. , Phillips, D.B. , Whyte, G. , Birks, T.A. , Wiaux, Y. , Thomson, R.R. : Computational optical imaging with a photonic lantern. Nat. Commun. 11 (1), 5217 (2020)
CrossRef Google scholar
[26]
Lu, Y. , Liu, W. , Chen, Z. , Jiang, M. , Zhou, Q. , Zhang, J. , Li, C. , Chai, J. , Jiang, Z. : Spatial mode control based on photonic lanterns. Opt. Express 29 (25), 41788- 41797 (2021)
CrossRef Google scholar
[27]
Lu, Y. , Jiang, Z. , Chen, Z. , Jiang, M. , Yang, J. , Zhou, Q. , Zhang, J. , Zhang, D. , Chai, J. , Yang, H. , Liu, W. : High-power orbital angular momentum beam generation using adaptive control system based on mode selective photonic lantern. J. Lightwave Technol. 41 (17), 5607- 5613 (2023)
CrossRef Google scholar
[28]
Yi, D. , Zhang, Y. , Wu, X. , Tsang, H.K. : Integrated multimode waveguide with photonic lantern for speckle spectroscopy. IEEE J. Quantum Electron. 57 (1), 1- 8 (2021)
CrossRef Google scholar
[29]
Wan, Y. , Fan, X. , Xu, B. , He, Z. : Reconstructive spectrum analyzer with high-resolution and large-bandwidth using physicalmodel and data-driven model combined neural network. Laser Photonics Rev. 17 (7), 2201018 (2023)
CrossRef Google scholar
[30]
Veettikazhy, M. , Kragh Hansen, A. , Marti, D. , Mark Jensen, S. , LykkeBorre, A. , Ravn Andresen, E. , Dholakia, K. , Eskil Andersen, P. : BPM-Matlab: an open-source optical propagation simulation tool in MATLAB. Opt. Express. 29 (8), 11819 (2021)
CrossRef Google scholar
[31]
Liang, J. , Xu, J. , Zhang, Y. , Ye, J. , Li, S. , Ma, X. , Ke, Y. , Leng, J. , Zhou, P. : Hundred-Watt-level, linearly polarized multi-wave-length fiber oscillator with wavelength, interval, and intensity tunability. J. Lightwave Technol. 42 (2), 882- 890 (2024)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 The Author(s)
AI Summary AI Mindmap
PDF(2651 KB)

Accesses

Citations

Detail

Sections
Recommended

/