Contactless integrated photonic probes: fundamentals, characteristics, and applications

Guangze Wu, Yuanjian Wan, Zhao Wang, Xiaolong Hu, Jinwei Zeng, Yu Zhang, Jian Wang

PDF(7089 KB)
PDF(7089 KB)
Front. Optoelectron. ›› 2024, Vol. 17 ›› Issue (3) : 26. DOI: 10.1007/s12200-024-00127-1
REVIEW ARTICLE

Contactless integrated photonic probes: fundamentals, characteristics, and applications

Author information +
History +

Abstract

On-chip optical power monitors are indispensable for functional implementation and stabilization of large-scale and complex photonic integrated circuits (PICs). Traditional on-chip optical monitoring is implemented by tapping a small portion of optical power from the waveguide, which leads to significant loss. Due to its advantages like non-invasive nature, miniaturization, and complementary metal-oxide-semiconductor (CMOS) process compatibility, a transparent monitor named the contactless integrated photonic probe (CLIPP), has been attracting great attention in recent years. The CLIPP indirectly monitors the optical power in the waveguide by detecting the conductance variation of the local optical waveguide caused by the surface state absorption (SSA) effect. In this review, we first introduce the fundamentals of the CLIPP including the concept, the equivalent electric model and the impedance read-out method, and then summarize some characteristics of the CLIPP. Finally, the functional applications of the CLIPP on the identification and feedback control of optical signal are discussed, followed by a brief outlook on the prospects of the CLIPP.

Graphical abstract

Keywords

Contactless integrated photonic probes / Photonic integrated circuits / Silicon photonics / Optical monitoring / Feedback control

Cite this article

Download citation ▾
Guangze Wu, Yuanjian Wan, Zhao Wang, Xiaolong Hu, Jinwei Zeng, Yu Zhang, Jian Wang. Contactless integrated photonic probes: fundamentals, characteristics, and applications. Front. Optoelectron., 2024, 17(3): 26 https://doi.org/10.1007/s12200-024-00127-1

References

[1]
Miller, D.: Device requirements for optical interconnects to silicon chips. Proc. IEEE 97 (7), 1166- 1185 (2009)
CrossRef Google scholar
[2]
Shen, Y., Harris, N.C., Skirlo, S., Prabhu, M., Baehr-Jones, T., Hochberg, M., Sun, X., Zhao, S., Larochelle, H., Englund, D., Soljačić, M.: Deep learning with coherent nanophotonic circuits. Nat. Photonics 11 (7), 441- 446 (2017)
CrossRef Google scholar
[3]
Luchansky, M.S., Bailey, R.C.: Rapid, multiparameter profiling of cellular secretion using silicon photonic microring resonator arrays. J. Am. Chem. Soc. 133 (50), 20500- 20506 (2011)
CrossRef Google scholar
[4]
Silverstone, J.W., Bonneau, D., Ohira, K., Suzuki, N., Yoshida, H., Iizuka, N., Ezaki, M., Natarajan, C.M., Tanner, M.G., Hadfield, R.H., Zwiller, V., Marshall, G.D., Rarity, J.G., O’Brien, J.L., Thompson, M.G.: On-chip quantum interference between silicon photon-pair sources. Nat. Photonics 8 (2), 104- 108 (2014)
CrossRef Google scholar
[5]
Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E.S., Watts, M.R.: Large-scale nanophotonic phased array. Nature 493 (7431), 195- 199 (2013)
CrossRef Google scholar
[6]
Padmaraju, K., Bergman, K.: Resolving the thermal challenges for silicon microring resonator devices. Nanophotonics 3 (4-5), 269- 281 (2014)
CrossRef Google scholar
[7]
Gazman, A., Browning, C., Zhu, Z., Barry, L.R., Bergman, K.: Automated thermal stabilization of cascaded silicon photonic ring resonators for reconfigurable WDM applications. In: 2017 European Conference on Optical Communication (ECOC). IEEE, 1- 3 (2017)
CrossRef Google scholar
[8]
Miller, D.A.B.: Reconfigurable add-drop multiplexer for spatial modes. Opt. Express. 21 (17), 20220 (2023)
CrossRef Google scholar
[9]
Morichetti, F., Grillanda, S., Carminati, M., Ferrari, G., Sampietro, M., Strain, M.J., Sorel, M., Melloni, A.: Non-invasive onchip light observation by contactless waveguide conductivity monitoring. IEEE J. Sel. Top. Quantum Electron. 20 (4), 292- 301 (2014)
CrossRef Google scholar
[10]
Melati, D., Carminati, M., Grillanda, S., Ferrari, G., Morichetti, F., Sampietro, M., Melloni, A.: ContactLess Integrated Photonic Probe for light monitoring in indium phosphide-based devices. IET Optoelectron. 9 (4), 146- 150 (2015)
CrossRef Google scholar
[11]
Carminati, M., Annoni, A., Morichetti, F., Guglielmi, E., Ferrari, G., De Aguiar, D.O.M., Melloni, A., Sampietro, M.: Design guidelines for contactless integrated photonic probes in dense photonic circuits. J. Lightwave Technol. 35 (14), 3042- 3049 (2017)
CrossRef Google scholar
[12]
Ciccarella, P., Carminati, M., Ferrari, G., Bianchi, D., Grillanda, S., Morichetti, F., Melloni, A., Sampietro, M.: Impedance-sensing CMOS chip for noninvasive light detection in integrated photonics. IEEE Trans. Circuits Syst., II Express Briefs 63 (10), 929- 933 (2016)
CrossRef Google scholar
[13]
Annoni, A., Oliveira De Aguiar, D., Melloni, A., Guglielmi, E., Carminati, M., Ferrari, G., Buchheit, A., Wiemhöfer, H.D., Muñoz-Castro, M., Klitis, C., Sorel, M., Morichetti, F.: Noninvasive monitoring and control in silicon photonics. In: 102490F (2017)
CrossRef Google scholar
[14]
Zhang, Z., Wang, Z., Zou, K., Yang, T., Hu, X.: Temperature-dependent characteristics of infrared photodetectors based on surface-state absorption in silicon. Appl. Opt. 60 (30), 9347 (2021)
CrossRef Google scholar
[15]
Casalino, M., Coppola, G., Iodice, M., Rendina, I., Sirleto, L.: Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives. Sensors (Basel) 10 (12), 10571- 10600 (2010)
CrossRef Google scholar
[16]
Wang, Z., Zhang, Z., Zou, K., Meng, Y., Liu, H., Hu, X.: Noise properties of contactless integrated photonic probes on silicon waveguides. Appl. Opt. 62 (1), 178 (2023)
CrossRef Google scholar
[17]
Grimaldi, V., Zanetto, F., Toso, F., De Vita, C., Ferrari, G.: Non-invasive light sensor with enhanced sensitivity for photonic integrated circuits. In: 2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME). IEEE, 285- 288 (2022)
CrossRef Google scholar
[18]
Carminati, M., Grillanda, S., Ciccarella, P., Ferrari, G., Strain, M.J., Sampietro, M., Melloni, A., Morichetti, F.: Fiber-to-wave-guide alignment assisted by a transparent integrated light monitor. IEEE Photonics Technol. Lett. 27 (5), 510- 513 (2015)
CrossRef Google scholar
[19]
Grillanda, S., Morichetti, F., Peserico, N., Ciccarella, P., Annoni, A., Carminati, M., Melloni, A.: Non-invasive monitoring of mode-division multiplexed channels on a silicon photonic chip. J. Lightwave Technol. 33 (6), 1197- 1201 (2015)
CrossRef Google scholar
[20]
De Aguiar, D.O.M., Milanizadeh, M., Guglielmi, E., Zanetto, F., Ferrari, G., Sampietro, M., Morichetti, F., Melloni, A.: Automatic tuning of silicon photonics microring filter array for hitless reconfigurable add-drop. J. Lightwave Technol. 37 (16), 3939- 3947 (2019)
CrossRef Google scholar
[21]
Annoni, A., Guglielmi, E., Carminati, M., Grillanda, S., Ciccarella, P., Ferrari, G., Sorel, M., Strain, M.J., Sampietro, M., Melloni, A., Morichetti, F.: Automated routing and control of silicon photonic switch fabrics. IEEE J. Sel. Top. Quantum Electron. 22 (6), 169- 176 (2016)
CrossRef Google scholar
[22]
Annoni, A., Guglielmi, E., Carminati, M., Ferrari, G., Sampietro, M., Miller, D.A., Melloni, A., Morichetti, F.: Unscrambling light—automatically undoing strong mixing between modes. Light Sci. Appl. 6 (12), e17110 (2017)
CrossRef Google scholar
[23]
Aguiar, D., Annoni, A., Guglielmi, E., Zanetto, F., Sampietro, M., Melloni, A., Morichetti, F.: On-chip OSNR monitoring with silicon photonics transparent detector. IEEE Photonics Technol. Lett. 29 (24), 2155- 2158 (2017)
CrossRef Google scholar
[24]
Grillanda, S., Carminati, M., Morichetti, F., Ciccarella, P., Annoni, A., Ferrari, G., Strain, M., Sorel, M., Sampietro, M., Melloni, A.: Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics. Optica 1 (3), 129 (2014)
CrossRef Google scholar
[25]
Grillanda, S., Ji, R., Morichetti, F., Carminati, M., Ferrari, G., Guglielmi, E., Peserico, N., Annoni, A., Dede, A., Nicolato, D., Vannucci, A., Klitis, C., Holmes, B., Sorel, M., Fu, S., Man, J., Zeng, L., Sampietro, M., Melloni, A.: Wavelength locking of silicon photonics multiplexer for DML-based WDM transmitter. J. Lightwave Technol. 35 (4), 607- 614 (2017)
CrossRef Google scholar
[26]
Zanetto, F., Grimaldi, V., Moralis-Pegios, M., Pitris, S., Fotiadis, K., Alexoudi, T., Guglielmi, E., Aguiar, D., De Heyn, P., Ban, Y., Van Campenhout, J., Pleros, N., Ferrari, G., Sampietro, M., Melloni, A.: WDM-based silicon photonic multi-socket interconnect architecture with automated wavelength and thermal drift compensation. J. Lightwave Technol. 38 (21), 6000- 6006 (2020)
CrossRef Google scholar
[27]
Grimaldi, V., Zanetto, F., Toso, F., Roumpos, I., Chrysostomidis, T., Perino, A., Petrini, M., Morichetti, F., Melloni, A., Pleros, N., Moralis-Pegios, M., Vyrsokinos, K., Ferrari, G., Sampietro, M.: Self-stabilized 50 Gb/s silicon photonic microring modulator using a power-independent and calibration-free control loop. J. Lightwave Technol. 41 (1), 218- 225 (2023)
CrossRef Google scholar
[28]
Roumpos, I., Chrysostomidis, T., Grimaldi, V., Zanetto, F., Toso, F., Heyn, P.D., Ban, Y., Campenhout, J.V., Ferrari, G., Sampietro, M., Morichetti, F., Melloni, A., Alexoudi, T., Pleros, N., Moralis-Pegios, M., Vyrsokinos, K.: Temperature and wavelength drift tolerant WDM transmission and routing in on-chip silicon photonic interconnects. Opt. Express 30 (15), 26628 (2022)
CrossRef Google scholar
[29]
Wang, Z., Zhang, Z., Zou, K., Meng, Y., Hu, X.: Silicon fourquadrant photodetector working at the 1550-nm telecommunication wavelength. Opt. Lett. 47 (16), 4048 (2022)
CrossRef Google scholar
[30]
Baehr-Jones, T., Pinguet, T., Lo Guo-Qiang, P., Danziger, S., Prather, D., Hochberg, M.: Myths and rumours of silicon photonics. Nat. Photonics 6 (4), 206- 208 (2012)
CrossRef Google scholar
[31]
Kopp, C., Bernabé, S., Bakir, B.B., Fedeli, J., Orobtchouk, R., Schrank, F., Porte, H., Zimmermann, L., Tekin, T.: Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging. IEEE J. Sel. Top. Quantum Electron. 17 (3), 498- 509 (2011)
CrossRef Google scholar
[32]
Qiao, L., Tang, W., Chu, T.: 32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units. Sci. Rep. 7 (1), 42306 (2017)
CrossRef Google scholar
[33]
Miller, D.A.B.: Self-configuring universal linear optical component. Photon. Res. 1 (1), 1 (2013)
CrossRef Google scholar
[34]
Zanetto, F., Grimaldi, V., Toso, F., Guglielmi, E., Milanizadeh, M., Aguiar, D., Moralis-Pegios, M., Pitris, S., Alexoudi, T., Morichetti, F., Melloni, A., Ferrari, G., Sampietro, M.: Dithering-based real-time control of cascaded silicon photonic devices by means of non-invasive detectors. IET Optoelectron. 15 (2), 111- 120 (2021)
CrossRef Google scholar
[35]
Padmaraju, K., Logan, D.F., Shiraishi, T., Ackert, J.J., Knights, A.P., Bergman, K.: Wavelength locking and thermally stabilizing microring resonators using dithering signals. J. Lightwave Technol. 32 (3), 505- 512 (2014)
CrossRef Google scholar
[36]
Grillanda, S., Fu, S., Ji, R., Morichetti, F., Peserico, N., Belladelli, I., Carminati, M., Ferrari, G., Sampietro, M., Dentin, A., Dedè, A., Vannucci, A., Holmes, B., Klitis, C., Sorel, M., Melloni, A.: Wavelength locking platform for DML-based multichannel transmitter on a silicon chip. In: Optical Fiber Communication Conference. OSA, W1E.2 (2016)
CrossRef Google scholar
[37]
Fu, S., Zeng, L., Ji, R., Grillanda, S., Morichetti, F., Carminati, M., Sampietro, M., Dentin, A., Dede, A., Vannucci, A., Melloni, A.: Automatic control of the silicon microring OSR and multiplexer in DML-based WDM transmitter for 40G TWDM-PON OLT. In: 2016 IEEE 13th International Conference on Group IV Photonics (GFP). IEEE 182- 183 (2016)
CrossRef Google scholar
[38]
Moralis-Pegios, M., Zanetto, F., Guglielmi, E., Grimaldi, V., Fotiadis, K., Pitris, S., Alexoudi, T., De Heyn, P., Ban, Y., Van Campenhout, J., Aguiar, D., Ferrari, G., Sampietro, M., Melloni, A., Pleros, N.: Automated thermal drift compensation in WDM-based silicon photonic multi-socket interconnect systems. In: Optical Fiber Communication Conference (OFC) 2020. Optica Publishing Group, W3G.2 (2020)
CrossRef Google scholar
[39]
Roumpos, I., Chrysostomidis, T., Grimaldi, V., Zanetto, F., Toso, F., De Heyn, P., Ban, Y., Van Campenhout, J., Ferrari, G., Sampietro, M., Morichetti, F., Melloni, A., Vyrsokinos, K., Alexoudi, T., Pleros, N., Moralis-Pegios, M.: Temperature tolerant on-chip WDM silicon photonic transmitter and AWGR-based routing interconnects. In: Optical Fiber Communication Conference (OFC) 2022. Optica Publishing Group, W4H.2 (2022)
CrossRef Google scholar
[40]
Milanizadeh, M., SeyedinNavadeh, S.M., Zanetto, F., Grimaldi, V., De Vita, C., Klitis, C., Sorel, M., Ferrari, G., Miller, D.A.B., Melloni, A., Morichetti, F.: Separating arbitrary free-space beams with an integrated photonic processor. Light Sci. Appl. 11 (1), 197 (2022)
CrossRef Google scholar
[41]
Milanizadeh, M., Borga, P., Morichetti, F., Miller, D.A.B., Melloni, A.: Manipulating free-space optical beams with a silicon photonic mesh. In: 2019 IEEE Photonics Society Summer Topical Meeting Series (SUM). IEEE 1- 2 (2019)
CrossRef Google scholar
[42]
Wang, Z., Liu, H., Zhang, Z., Zou, K., Hu, X.: Infrared photoconductor based on surface-state absorption in silicon. Opt. Lett. 46 (11), 2577 (2021)
CrossRef Google scholar
[43]
Wang, Z., Liu, H., Zhang, Z., Zou, K., Hu, X.: Normal-incidence infrared silicon photodetectors based on surface-state absorption and their applications. In: Conference on Lasers and Electro-Optics. Optica Publishing Group, JW3B.26 (2022)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 The Author(s)
AI Summary AI Mindmap
PDF(7089 KB)

Accesses

Citations

Detail

Sections
Recommended

/