Polarization and wavelength routers based on diffractive neural network
Xiaohong Lin, Yulan Fu, Kuo Zhang, Xinping Zhang, Shuai Feng, Xiaoyong Hu
Polarization and wavelength routers based on diffractive neural network
In the field of information processing, all-optical routers are significant for achieving high-speed, high-capacity signal processing and transmission. In this study, we developed three types of structurally simple and flexible routers using the deep diffractive neural network (D2NN), capable of routing incident light based on wavelength and polarization. First, we implemented a polarization router for routing two orthogonally polarized light beams. The second type is the wavelength router that can route light with wavelengths of 1550, 1300, and 1100 nm, demonstrating outstanding performance with insertion loss as low as 0.013 dB and an extinction ratio of up to 18.96 dB, while also maintaining excellent polarization preservation. The final router is the polarization-wavelength composite router, capable of routing six types of input light formed by pairwise combinations of three wavelengths (1550, 1300, and 1100 nm) and two orthogonal linearly polarized lights, thereby enhancing the information processing capability of the device. These devices feature compact structures, maintaining high contrast while exhibiting low loss and passive characteristics, making them suitable for integration into future optical components. This study introduces new avenues and methodologies to enhance performance and broaden the applications of future optical information processing systems.
Optical diffractive neural network / All-optical routers / Polarization degree of freedom / Wavelength degree of freedom
[1] |
Gershenfeld, N. , Krikorian, R. , Cohen, D. : The internet of things. Sci. Am. 291 (4), 76- 81 (2004)
CrossRef
Google scholar
|
[2] |
Xu, L. , He, W. , Li, S. : Internet of things in industries: a survey. IEEE Trans. Industr. Inform. 10 (4), 2233- 2243 (2014)
CrossRef
Google scholar
|
[3] |
Li, S. , Xu, L. , Zhao, S. : The internet of things: a survey. Inf. Syst. Front. 17 (2), 243- 259 (2015)
CrossRef
Google scholar
|
[4] |
Paul, A. , Jeyaraj, R. : Internet of things: a primer. Hum. Behav. Emerg. Technol. 1 (1), 37- 47 (2019)
CrossRef
Google scholar
|
[5] |
Birje, M.N. , Challagidad, P.S. , Goudar, R.H. , Tapale, M.T. : Cloud computing review: concepts, technology, challenges and security. Int. J. Cloud Comput. 6 (1), 32- 57 (2017)
CrossRef
Google scholar
|
[6] |
Dikaiakos, M.D. , Katsaros, D. , Mehra, P. , Pallis, G. , Vakali, A. : Cloud computing: distributed internet computing for IT and scientific research. IEEE Internet Comput. 13 (5), 10- 13 (2009)
CrossRef
Google scholar
|
[7] |
Srinivas, J. , Reddy, K.V.S. , Qyser, A.M. : Cloud computing basics. Int. J. Adv. Res. Comput. Commun. Eng. 1, 343- 347 (2012)
|
[8] |
Lee, J. : A view of cloud computing. International Journal of Networked and Distributed Computing 1 (1), 2- 8 (2013)
CrossRef
Google scholar
|
[9] |
Marston, S. , Li, Z. , Bandyopadhyay, S. , Zhang, J. , Ghalsasi, A. : Cloud computing—The business perspective. Decis. Support. Syst. 51 (1), 176- 189 (2011)
CrossRef
Google scholar
|
[10] |
Zhang, Q. , Cheng, L. , Boutaba, R. : Cloud computing: state-of-theart and research challenges. J. Internet Serv. Appl. 1 (1), 7- 18 (2010)
CrossRef
Google scholar
|
[11] |
Goodman, J.W. , Leonberger, F.J. , Kung, S.Y. , Athale, R.A. : Optical interconnections for VLSI systems. Proc. IEEE 72 (7), 850- 866 (1984)
CrossRef
Google scholar
|
[12] |
Haugen, P.R. , Rychnovsky, S. , Husain, A. , Hutcheson, L.D. : Optical interconnects for high speed computing. Opt. Eng. 25 (10), 1076- 1085 (1986)
CrossRef
Google scholar
|
[13] |
Tsang, D.Z. , Goblick, T.J. : Free-space optical interconnection technology in parallel processing systems. Opt. Eng. 33 (5), 1524- 1531 (1994)
CrossRef
Google scholar
|
[14] |
Lytel, R. , Davidson, H.L. , Nettleton, N. , Sze, T. : Optical interconnections within modern high-performance computing systems. Proc. IEEE 88 (6), 758- 763 (2000)
CrossRef
Google scholar
|
[15] |
Biberman, A. , Bergman, K. : Optical interconnection networks for high-performance computing systems. Rep. Prog. Phys. 75 (4), 046402 (2012)
CrossRef
Google scholar
|
[16] |
Liao, K. , Chen, Y. , Yu, Z. , Hu, X. , Wang, X. , Lu, C. , Lin, H. , Du, Q. , Hu, J. , Gong, Q. : All-optical computing based on convolutional neural networks. Opto-Electronic Advances. 4 (11), 200060 (2021)
CrossRef
Google scholar
|
[17] |
Liao, K. , Li, C. , Dai, T. , Zhong, C. , Lin, H. , Hu, X. , Gong, Q. : Matrix eigenvalue solver based on reconfigurable photonic neural network. Nanophotonics 11 (17), 4089- 4099 (2022)
CrossRef
Google scholar
|
[18] |
Zhong, C. , Liao, K. , Dai, T. , Wei, M. , Ma, H. , Wu, J. , Zhang, Z. , Ye, Y. , Luo, Y. , Chen, Z. , Jian, J. , Sun, C. , Tang, B. , Zhang, P. , Liu, R. , Li, J. , Yang, J. , Li, L. , Liu, K. , Hu, X. , Lin, H. : Graphene/silicon heterojunction for reconfigurable phase-relevant activation function in coherent optical neural networks. Nat. Commun. 14 (1), 6939 (2023)
CrossRef
Google scholar
|
[19] |
Yuan, H. , Ma, L. , Yuan, Z. , Feng, S. , Li, J. , Hu, X. , Lu, C. : Onchip cascaded bandpass filter and wavelength router using an intelligent algorithm. IEEE Photonics J. 13 (4), 1- 8 (2021)
CrossRef
Google scholar
|
[20] |
Yuan, Z. , Feng, S. , Liu, W. , Liu, Z. , Zhang, Y. , Lu, C. : On-chip ultra-small arbitrary-elliptical-polarization converters. IEEE Photonics J. 13, 1- 8 (2021)
CrossRef
Google scholar
|
[21] |
Mansuri, M. , Mir, A. , Farmani, A. : Numerical analysis of tunable nonlinear plasmonic router based on nanoscale ring resonators. Opt. Quantum Electron. 52 (10), 1- 15 (2020)
CrossRef
Google scholar
|
[22] |
Zheng, X. , Raz, O. , Calabretta, N. , Zhao, D. , Lu, R. , Liu, Y. : Multiport InP monolithically integrated all-optical wavelength router. Opt. Lett. 41 (16), 3892- 3895 (2016)
CrossRef
Google scholar
|
[23] |
Qiu, T.H. , Li, H. , Xie, M. , Liu, Q. , Ma, H.Y. , Xu, R. : Efficient all-optical router and beam splitter for light with orbital angular momentum. Opt. Express 28 (13), 19750- 19759 (2020)
CrossRef
Google scholar
|
[24] |
Lin, X. , Rivenson, Y. , Yardimci, N.T. , Veli, M. , Luo, Y. , Jarrahi, M. , Ozcan, A. : All-optical machine learning using diffractive deep neural networks. Science 361 (6406), 1004- 1008 (2018)
CrossRef
Google scholar
|
[25] |
Ding, X. , Zhao, Z. , Xie, P. , Cai, D. , Meng, F. , Wang, C. , Wu, Q. , Liu, J. , Burokur, S.N. , Hu, G. : Metasurface-based optical logic operators driven by diffractive neural networks. Adv. Mater. 36 (9), 2308993 (2024)
CrossRef
Google scholar
|
[26] |
Zhao, Z. , Wang, Y. , Ding, X. , Li, H. , Fu, J. , Zhang, K. , Burokur, S.N. , Wu, Q. : Compact logic operator utilizing a single-layer metasurface. Photon. Res. 10 (2), 316- 322 (2022)
CrossRef
Google scholar
|
[27] |
Zhao, Z. , Wang, Y. , Guan, C. , Zhang, K. , Wu, Q. , Li, H. , Liu, J. , Burokur, S.N. , Ding, X. : Deep learning-enabled compact optical trigonometric operator with metasurface. PhotoniX 3 (1), 15 (2022)
CrossRef
Google scholar
|
[28] |
Mengu, D. , Luo, Y. , Rivenson, Y. , Ozcan, A. : Analysis of diffractive optical neural networks and their integration with electronic neural networks. IEEE J. Sel. Top. Quantum Electron. 26, 3700114 (2019)
CrossRef
Google scholar
|
[29] |
Qian, C. , Wang, Z. , Qian, H. , Cai, T. , Zheng, B. , Lin, X. , Shen, Y. , Kaminer, I. , Li, E. , Chen, H. : Dynamic recognition and mirage using neuro-metamaterials. Nat. Commun. 13 (1), 2694 (2022)
CrossRef
Google scholar
|
[30] |
Yan, T. , Yang, R. , Zheng, Z. , Lin, X. , Xiong, H. , Dai, Q. : Alloptical graph representation learning using integrated diffractive photonic computing units. Sci. Adv. 8 (24), eabn7630 (2022)
CrossRef
Google scholar
|
[31] |
Zheng, M. , Shi, L. , Zi, J. : Optimize performance of a diffractive neural network by controlling the Fresnel number. Photon. Res. 10 (11), 2667- 2676 (2022)
CrossRef
Google scholar
|
[32] |
Qu, G. , Cai, G. , Sha, X. , Chen, Q. , Cheng, J. , Zhang, Y. , Han, J. , Song, Q. , Xiao, S. : All-dielectric metasurface empowered optical-electronic hybrid neural networks. Laser Photonics Rev. 16 (10), 2100732 (2022)
CrossRef
Google scholar
|
[33] |
Bai, B. , Li, Y. , Luo, Y. , Li, X. , Çetintaş, E. , Jarrahi, M. , Ozcan, A. : All-optical image classification through unknown random diffusers using a single-pixel diffractive network. Light Sci. Appl. 12 (1), 69 (2023)
CrossRef
Google scholar
|
[34] |
Duan, Z. , Chen, H. , Lin, X. : Optical multi-task learning using multi-wavelength diffractive deep neural networks. Nanophotonics 12 (5), 893- 903 (2023)
CrossRef
Google scholar
|
[35] |
Fu, T. , Zang, Y. , Huang, Y. , Du, Z. , Huang, H. , Hu, C. , Chen, M. , Yang, S. , Chen, H. : Photonic machine learning with on-chip diffractive optics. Nat. Commun. 14 (1), 70 (2023)
CrossRef
Google scholar
|
[36] |
Zhang, K. , Liao, K. , Cheng, H. , Feng, S. , Hu, X. : Advanced alloptical classification using orbital-angular-momentum-encoded diffractive networks. Advanced Photonics Nexus 2 (6), 66006 (2023)
CrossRef
Google scholar
|
[37] |
Li, J. , Mengu, D. , Luo, Y. , Rivenson, Y. , Ozcan, A. : Class-specific differential detection in diffractive optical neural networks improves inference accuracy. Adv. Photonics 1 (4), 46001 (2019)
CrossRef
Google scholar
|
[38] |
Yan, T. , Wu, J. , Zhou, T. , Xie, H. , Xu, F. , Fan, J. , Fang, L. , Lin, X. , Dai, Q. : Fourier-space diffractive deep neural network. Phys. Rev. Lett. 123 (2), 023901 (2019)
CrossRef
Google scholar
|
[39] |
Mengu, D. , Rivenson, Y. , Ozcan, A. : Scale-, shift-, and rotationinvariant diffractive optical networks. ACS Photonics 8 (1), 324- 334 (2021)
CrossRef
Google scholar
|
[40] |
Zhou, T. , Fang, L. , Yan, T. , Wu, J. , Li, Y. , Fan, J. , Wu, H. , Lin, X. , Dai, Q. : In situ optical backpropagation training of diffractive optical neural networks. Photon. Res. 8 (6), 940- 953 (2020)
CrossRef
Google scholar
|
[41] |
Kulce, O. , Mengu, D. , Rivenson, Y. , Ozcan, A. : All-optical information-processing capacity of diffractive surfaces. Light Sci. Appl. 10 (1), 25 (2021)
CrossRef
Google scholar
|
[42] |
Rahman, M.S.S. , Li, J. , Mengu, D. , Rivenson, Y. , Ozcan, A. : Ensemble learning of diffractive optical networks. Light Sci. Appl. 10 (1), 14 (2021)
CrossRef
Google scholar
|
[43] |
Kulce, O. , Mengu, D. , Rivenson, Y. , Ozcan, A. : All-optical synthesis of an arbitrary linear transformation using diffractive surfaces. Light Sci. Appl. 10 (1), 196 (2021)
CrossRef
Google scholar
|
[44] |
Liu, C. , Ma, Q. , Luo, Z.J. , Hong, Q.R. , Xiao, Q. , Zhang, H.C. , Miao, L. , Yu, W.M. , Cheng, Q. , Li, L. , Cui, T.J. : A programmable diffractive deep neural network based on a digital-coding metasurface array. Nat. Electron. 5 (2), 113- 122 (2022)
CrossRef
Google scholar
|
[45] |
Qian, C. , Lin, X. , Lin, X. , Xu, J. , Sun, Y. , Li, E. , Zhang, B. , Chen, H. : Performing optical logic operations by a diffractive neural network. Light Sci. Appl. 9 (1), 59 (2020)
CrossRef
Google scholar
|
[46] |
Luo, Y. , Mengu, D. , Ozcan, A. : Cascadable all-optical NAND gates using diffractive networks. Sci. Rep. 12 (1), 7121 (2022)
CrossRef
Google scholar
|
[47] |
Li, Z. , Guo, Y. : Orbital angular momentum logic gates based on optical diffraction neural network. In: International Conference on Optics and Machine Vision (ICOMV 2023) (SPIE). 1 Vol. 12634,. pp. 13- 18 (2023)
CrossRef
Google scholar
|
[48] |
Lin, X. , Zhang, K. , Liao, K. , Huang, H. , Fu, Y. , Zhang, X. , Feng, S. , Hu, X. : Polarization-based all-optical logic gates using diffractive neural networks. J. Opt. 26 (3), 035701 (2024)
CrossRef
Google scholar
|
[49] |
Veli, M. , Mengu, D. , Yardimci, N.T. , Luo, Y. , Li, J. , Rivenson, Y. , Jarrahi, M. , Ozcan, A. : Terahertz pulse shaping using diffractive surfaces. Nat. Commun. 12 (1), 37 (2021)
CrossRef
Google scholar
|
[50] |
Goi, E. , Schoenhardt, S. , Gu, M. : Direct retrieval of Zernike-based pupil functions using integrated diffractive deep neural networks. Nat. Commun. 13 (1), 7531 (2022)
CrossRef
Google scholar
|
[51] |
Luo, Y. , Zhao, Y. , Li, J. , Çetintaş, E. , Rivenson, Y. , Jarrahi, M. , Ozcan, A. : Computational imaging without a computer: seeing through random diffusers at the speed of light. eLight 2, 4 (2022)
CrossRef
Google scholar
|
[52] |
Li, J. , Mengu, D. , Yardimci, N.T. , Luo, Y. , Li, X. , Veli, M. , Rivenson, Y. , Jarrahi, M. , Ozcan, A. : Spectrally encoded singlepixel machine vision using diffractive networks. Sci. Adv. 7 (13), eabd7690 (2021)
CrossRef
Google scholar
|
[53] |
Mengu, D. , Tabassum, A. , Jarrahi, M. , Ozcan, A. : Snapshot multispectral imaging using a diffractive optical network. Light Sci. Appl. 12 (1), 86 (2023)
CrossRef
Google scholar
|
[54] |
Arnold, W.H. : Toward 3 nm overlay and critical dimension uniformity: an integrated error budget for double patterning lithography. Optical Microlithography XXI (SPIE) 6924, 50- 58 (2008)
CrossRef
Google scholar
|
[55] |
Mulkens, J. , Slachter, B. , Kubis, M. , Tel, W. , Hinnen, P. , Maslow, M. , Dillen, H. , Ma, E. , Chou, K. , Liu, X. : Holistic approach for overlay and edge placement error to meet the 5nm technology node requirements. In: Metrology, Inspection, and Process Control for Microlithography XXXII (SPIE), Vol. 10585,. pp. 375- 388 (2018)
CrossRef
Google scholar
|
/
〈 | 〉 |