Polarization and wavelength routers based on diffractive neural network

Xiaohong Lin, Yulan Fu, Kuo Zhang, Xinping Zhang, Shuai Feng, Xiaoyong Hu

PDF(2067 KB)
PDF(2067 KB)
Front. Optoelectron. ›› 2024, Vol. 17 ›› Issue (3) : 22. DOI: 10.1007/s12200-024-00126-2
RESEARCH ARTICLE

Polarization and wavelength routers based on diffractive neural network

Author information +
History +

Abstract

In the field of information processing, all-optical routers are significant for achieving high-speed, high-capacity signal processing and transmission. In this study, we developed three types of structurally simple and flexible routers using the deep diffractive neural network (D2NN), capable of routing incident light based on wavelength and polarization. First, we implemented a polarization router for routing two orthogonally polarized light beams. The second type is the wavelength router that can route light with wavelengths of 1550, 1300, and 1100 nm, demonstrating outstanding performance with insertion loss as low as 0.013 dB and an extinction ratio of up to 18.96 dB, while also maintaining excellent polarization preservation. The final router is the polarization-wavelength composite router, capable of routing six types of input light formed by pairwise combinations of three wavelengths (1550, 1300, and 1100 nm) and two orthogonal linearly polarized lights, thereby enhancing the information processing capability of the device. These devices feature compact structures, maintaining high contrast while exhibiting low loss and passive characteristics, making them suitable for integration into future optical components. This study introduces new avenues and methodologies to enhance performance and broaden the applications of future optical information processing systems.

Graphical abstract

Keywords

Optical diffractive neural network / All-optical routers / Polarization degree of freedom / Wavelength degree of freedom

Cite this article

Download citation ▾
Xiaohong Lin, Yulan Fu, Kuo Zhang, Xinping Zhang, Shuai Feng, Xiaoyong Hu. Polarization and wavelength routers based on diffractive neural network. Front. Optoelectron., 2024, 17(3): 22 https://doi.org/10.1007/s12200-024-00126-2

References

[1]
Gershenfeld, N. , Krikorian, R. , Cohen, D. : The internet of things. Sci. Am. 291 (4), 76- 81 (2004)
CrossRef Google scholar
[2]
Xu, L. , He, W. , Li, S. : Internet of things in industries: a survey. IEEE Trans. Industr. Inform. 10 (4), 2233- 2243 (2014)
CrossRef Google scholar
[3]
Li, S. , Xu, L. , Zhao, S. : The internet of things: a survey. Inf. Syst. Front. 17 (2), 243- 259 (2015)
CrossRef Google scholar
[4]
Paul, A. , Jeyaraj, R. : Internet of things: a primer. Hum. Behav. Emerg. Technol. 1 (1), 37- 47 (2019)
CrossRef Google scholar
[5]
Birje, M.N. , Challagidad, P.S. , Goudar, R.H. , Tapale, M.T. : Cloud computing review: concepts, technology, challenges and security. Int. J. Cloud Comput. 6 (1), 32- 57 (2017)
CrossRef Google scholar
[6]
Dikaiakos, M.D. , Katsaros, D. , Mehra, P. , Pallis, G. , Vakali, A. : Cloud computing: distributed internet computing for IT and scientific research. IEEE Internet Comput. 13 (5), 10- 13 (2009)
CrossRef Google scholar
[7]
Srinivas, J. , Reddy, K.V.S. , Qyser, A.M. : Cloud computing basics. Int. J. Adv. Res. Comput. Commun. Eng. 1, 343- 347 (2012)
[8]
Lee, J. : A view of cloud computing. International Journal of Networked and Distributed Computing 1 (1), 2- 8 (2013)
CrossRef Google scholar
[9]
Marston, S. , Li, Z. , Bandyopadhyay, S. , Zhang, J. , Ghalsasi, A. : Cloud computing—The business perspective. Decis. Support. Syst. 51 (1), 176- 189 (2011)
CrossRef Google scholar
[10]
Zhang, Q. , Cheng, L. , Boutaba, R. : Cloud computing: state-of-theart and research challenges. J. Internet Serv. Appl. 1 (1), 7- 18 (2010)
CrossRef Google scholar
[11]
Goodman, J.W. , Leonberger, F.J. , Kung, S.Y. , Athale, R.A. : Optical interconnections for VLSI systems. Proc. IEEE 72 (7), 850- 866 (1984)
CrossRef Google scholar
[12]
Haugen, P.R. , Rychnovsky, S. , Husain, A. , Hutcheson, L.D. : Optical interconnects for high speed computing. Opt. Eng. 25 (10), 1076- 1085 (1986)
CrossRef Google scholar
[13]
Tsang, D.Z. , Goblick, T.J. : Free-space optical interconnection technology in parallel processing systems. Opt. Eng. 33 (5), 1524- 1531 (1994)
CrossRef Google scholar
[14]
Lytel, R. , Davidson, H.L. , Nettleton, N. , Sze, T. : Optical interconnections within modern high-performance computing systems. Proc. IEEE 88 (6), 758- 763 (2000)
CrossRef Google scholar
[15]
Biberman, A. , Bergman, K. : Optical interconnection networks for high-performance computing systems. Rep. Prog. Phys. 75 (4), 046402 (2012)
CrossRef Google scholar
[16]
Liao, K. , Chen, Y. , Yu, Z. , Hu, X. , Wang, X. , Lu, C. , Lin, H. , Du, Q. , Hu, J. , Gong, Q. : All-optical computing based on convolutional neural networks. Opto-Electronic Advances. 4 (11), 200060 (2021)
CrossRef Google scholar
[17]
Liao, K. , Li, C. , Dai, T. , Zhong, C. , Lin, H. , Hu, X. , Gong, Q. : Matrix eigenvalue solver based on reconfigurable photonic neural network. Nanophotonics 11 (17), 4089- 4099 (2022)
CrossRef Google scholar
[18]
Zhong, C. , Liao, K. , Dai, T. , Wei, M. , Ma, H. , Wu, J. , Zhang, Z. , Ye, Y. , Luo, Y. , Chen, Z. , Jian, J. , Sun, C. , Tang, B. , Zhang, P. , Liu, R. , Li, J. , Yang, J. , Li, L. , Liu, K. , Hu, X. , Lin, H. : Graphene/silicon heterojunction for reconfigurable phase-relevant activation function in coherent optical neural networks. Nat. Commun. 14 (1), 6939 (2023)
CrossRef Google scholar
[19]
Yuan, H. , Ma, L. , Yuan, Z. , Feng, S. , Li, J. , Hu, X. , Lu, C. : Onchip cascaded bandpass filter and wavelength router using an intelligent algorithm. IEEE Photonics J. 13 (4), 1- 8 (2021)
CrossRef Google scholar
[20]
Yuan, Z. , Feng, S. , Liu, W. , Liu, Z. , Zhang, Y. , Lu, C. : On-chip ultra-small arbitrary-elliptical-polarization converters. IEEE Photonics J. 13, 1- 8 (2021)
CrossRef Google scholar
[21]
Mansuri, M. , Mir, A. , Farmani, A. : Numerical analysis of tunable nonlinear plasmonic router based on nanoscale ring resonators. Opt. Quantum Electron. 52 (10), 1- 15 (2020)
CrossRef Google scholar
[22]
Zheng, X. , Raz, O. , Calabretta, N. , Zhao, D. , Lu, R. , Liu, Y. : Multiport InP monolithically integrated all-optical wavelength router. Opt. Lett. 41 (16), 3892- 3895 (2016)
CrossRef Google scholar
[23]
Qiu, T.H. , Li, H. , Xie, M. , Liu, Q. , Ma, H.Y. , Xu, R. : Efficient all-optical router and beam splitter for light with orbital angular momentum. Opt. Express 28 (13), 19750- 19759 (2020)
CrossRef Google scholar
[24]
Lin, X. , Rivenson, Y. , Yardimci, N.T. , Veli, M. , Luo, Y. , Jarrahi, M. , Ozcan, A. : All-optical machine learning using diffractive deep neural networks. Science 361 (6406), 1004- 1008 (2018)
CrossRef Google scholar
[25]
Ding, X. , Zhao, Z. , Xie, P. , Cai, D. , Meng, F. , Wang, C. , Wu, Q. , Liu, J. , Burokur, S.N. , Hu, G. : Metasurface-based optical logic operators driven by diffractive neural networks. Adv. Mater. 36 (9), 2308993 (2024)
CrossRef Google scholar
[26]
Zhao, Z. , Wang, Y. , Ding, X. , Li, H. , Fu, J. , Zhang, K. , Burokur, S.N. , Wu, Q. : Compact logic operator utilizing a single-layer metasurface. Photon. Res. 10 (2), 316- 322 (2022)
CrossRef Google scholar
[27]
Zhao, Z. , Wang, Y. , Guan, C. , Zhang, K. , Wu, Q. , Li, H. , Liu, J. , Burokur, S.N. , Ding, X. : Deep learning-enabled compact optical trigonometric operator with metasurface. PhotoniX 3 (1), 15 (2022)
CrossRef Google scholar
[28]
Mengu, D. , Luo, Y. , Rivenson, Y. , Ozcan, A. : Analysis of diffractive optical neural networks and their integration with electronic neural networks. IEEE J. Sel. Top. Quantum Electron. 26, 3700114 (2019)
CrossRef Google scholar
[29]
Qian, C. , Wang, Z. , Qian, H. , Cai, T. , Zheng, B. , Lin, X. , Shen, Y. , Kaminer, I. , Li, E. , Chen, H. : Dynamic recognition and mirage using neuro-metamaterials. Nat. Commun. 13 (1), 2694 (2022)
CrossRef Google scholar
[30]
Yan, T. , Yang, R. , Zheng, Z. , Lin, X. , Xiong, H. , Dai, Q. : Alloptical graph representation learning using integrated diffractive photonic computing units. Sci. Adv. 8 (24), eabn7630 (2022)
CrossRef Google scholar
[31]
Zheng, M. , Shi, L. , Zi, J. : Optimize performance of a diffractive neural network by controlling the Fresnel number. Photon. Res. 10 (11), 2667- 2676 (2022)
CrossRef Google scholar
[32]
Qu, G. , Cai, G. , Sha, X. , Chen, Q. , Cheng, J. , Zhang, Y. , Han, J. , Song, Q. , Xiao, S. : All-dielectric metasurface empowered optical-electronic hybrid neural networks. Laser Photonics Rev. 16 (10), 2100732 (2022)
CrossRef Google scholar
[33]
Bai, B. , Li, Y. , Luo, Y. , Li, X. , Çetintaş, E. , Jarrahi, M. , Ozcan, A. : All-optical image classification through unknown random diffusers using a single-pixel diffractive network. Light Sci. Appl. 12 (1), 69 (2023)
CrossRef Google scholar
[34]
Duan, Z. , Chen, H. , Lin, X. : Optical multi-task learning using multi-wavelength diffractive deep neural networks. Nanophotonics 12 (5), 893- 903 (2023)
CrossRef Google scholar
[35]
Fu, T. , Zang, Y. , Huang, Y. , Du, Z. , Huang, H. , Hu, C. , Chen, M. , Yang, S. , Chen, H. : Photonic machine learning with on-chip diffractive optics. Nat. Commun. 14 (1), 70 (2023)
CrossRef Google scholar
[36]
Zhang, K. , Liao, K. , Cheng, H. , Feng, S. , Hu, X. : Advanced alloptical classification using orbital-angular-momentum-encoded diffractive networks. Advanced Photonics Nexus 2 (6), 66006 (2023)
CrossRef Google scholar
[37]
Li, J. , Mengu, D. , Luo, Y. , Rivenson, Y. , Ozcan, A. : Class-specific differential detection in diffractive optical neural networks improves inference accuracy. Adv. Photonics 1 (4), 46001 (2019)
CrossRef Google scholar
[38]
Yan, T. , Wu, J. , Zhou, T. , Xie, H. , Xu, F. , Fan, J. , Fang, L. , Lin, X. , Dai, Q. : Fourier-space diffractive deep neural network. Phys. Rev. Lett. 123 (2), 023901 (2019)
CrossRef Google scholar
[39]
Mengu, D. , Rivenson, Y. , Ozcan, A. : Scale-, shift-, and rotationinvariant diffractive optical networks. ACS Photonics 8 (1), 324- 334 (2021)
CrossRef Google scholar
[40]
Zhou, T. , Fang, L. , Yan, T. , Wu, J. , Li, Y. , Fan, J. , Wu, H. , Lin, X. , Dai, Q. : In situ optical backpropagation training of diffractive optical neural networks. Photon. Res. 8 (6), 940- 953 (2020)
CrossRef Google scholar
[41]
Kulce, O. , Mengu, D. , Rivenson, Y. , Ozcan, A. : All-optical information-processing capacity of diffractive surfaces. Light Sci. Appl. 10 (1), 25 (2021)
CrossRef Google scholar
[42]
Rahman, M.S.S. , Li, J. , Mengu, D. , Rivenson, Y. , Ozcan, A. : Ensemble learning of diffractive optical networks. Light Sci. Appl. 10 (1), 14 (2021)
CrossRef Google scholar
[43]
Kulce, O. , Mengu, D. , Rivenson, Y. , Ozcan, A. : All-optical synthesis of an arbitrary linear transformation using diffractive surfaces. Light Sci. Appl. 10 (1), 196 (2021)
CrossRef Google scholar
[44]
Liu, C. , Ma, Q. , Luo, Z.J. , Hong, Q.R. , Xiao, Q. , Zhang, H.C. , Miao, L. , Yu, W.M. , Cheng, Q. , Li, L. , Cui, T.J. : A programmable diffractive deep neural network based on a digital-coding metasurface array. Nat. Electron. 5 (2), 113- 122 (2022)
CrossRef Google scholar
[45]
Qian, C. , Lin, X. , Lin, X. , Xu, J. , Sun, Y. , Li, E. , Zhang, B. , Chen, H. : Performing optical logic operations by a diffractive neural network. Light Sci. Appl. 9 (1), 59 (2020)
CrossRef Google scholar
[46]
Luo, Y. , Mengu, D. , Ozcan, A. : Cascadable all-optical NAND gates using diffractive networks. Sci. Rep. 12 (1), 7121 (2022)
CrossRef Google scholar
[47]
Li, Z. , Guo, Y. : Orbital angular momentum logic gates based on optical diffraction neural network. In: International Conference on Optics and Machine Vision (ICOMV 2023) (SPIE). 1 Vol. 12634,. pp. 13- 18 (2023)
CrossRef Google scholar
[48]
Lin, X. , Zhang, K. , Liao, K. , Huang, H. , Fu, Y. , Zhang, X. , Feng, S. , Hu, X. : Polarization-based all-optical logic gates using diffractive neural networks. J. Opt. 26 (3), 035701 (2024)
CrossRef Google scholar
[49]
Veli, M. , Mengu, D. , Yardimci, N.T. , Luo, Y. , Li, J. , Rivenson, Y. , Jarrahi, M. , Ozcan, A. : Terahertz pulse shaping using diffractive surfaces. Nat. Commun. 12 (1), 37 (2021)
CrossRef Google scholar
[50]
Goi, E. , Schoenhardt, S. , Gu, M. : Direct retrieval of Zernike-based pupil functions using integrated diffractive deep neural networks. Nat. Commun. 13 (1), 7531 (2022)
CrossRef Google scholar
[51]
Luo, Y. , Zhao, Y. , Li, J. , Çetintaş, E. , Rivenson, Y. , Jarrahi, M. , Ozcan, A. : Computational imaging without a computer: seeing through random diffusers at the speed of light. eLight 2, 4 (2022)
CrossRef Google scholar
[52]
Li, J. , Mengu, D. , Yardimci, N.T. , Luo, Y. , Li, X. , Veli, M. , Rivenson, Y. , Jarrahi, M. , Ozcan, A. : Spectrally encoded singlepixel machine vision using diffractive networks. Sci. Adv. 7 (13), eabd7690 (2021)
CrossRef Google scholar
[53]
Mengu, D. , Tabassum, A. , Jarrahi, M. , Ozcan, A. : Snapshot multispectral imaging using a diffractive optical network. Light Sci. Appl. 12 (1), 86 (2023)
CrossRef Google scholar
[54]
Arnold, W.H. : Toward 3 nm overlay and critical dimension uniformity: an integrated error budget for double patterning lithography. Optical Microlithography XXI (SPIE) 6924, 50- 58 (2008)
CrossRef Google scholar
[55]
Mulkens, J. , Slachter, B. , Kubis, M. , Tel, W. , Hinnen, P. , Maslow, M. , Dillen, H. , Ma, E. , Chou, K. , Liu, X. : Holistic approach for overlay and edge placement error to meet the 5nm technology node requirements. In: Metrology, Inspection, and Process Control for Microlithography XXXII (SPIE), Vol. 10585,. pp. 375- 388 (2018)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 The Author(s)
AI Summary AI Mindmap
PDF(2067 KB)

Accesses

Citations

Detail

Sections
Recommended

/