Control of visible-range transmission and reflection haze by varying pattern size, shape and depth in flexible metasurfaces

Avijit Maity, Vaswati Biswas, R. Vijaya

PDF(4420 KB)
PDF(4420 KB)
Front. Optoelectron. ›› 2024, Vol. 17 ›› Issue (3) : 25. DOI: 10.1007/s12200-024-00125-3
RESEARCH ARTICLE

Control of visible-range transmission and reflection haze by varying pattern size, shape and depth in flexible metasurfaces

Author information +
History +

Abstract

Cost-effective soft imprint lithography technique is used to prepare flexible thin polymeric surfaces containing a periodic arrangement of nanodimples and nanobumps of sub-micron size. Using a single master mold of self-assembled colloidal crystal, metasurfaces with different depths and heights of patterns with a fixed pitch are possible, which makes the process inexpensive and simple. These metasurfaces are studied for their diffuse and total transmission and reflection spectra in the visible range. The transmission haze and reflection haze are calculated from the measurements. The surface containing nanobumps of lesser pattern height result in higher values of reflection and transmission haze than from surfaces containing nanodimples of much higher depth for the same pitch. The haze is more dependent on the pattern depth or height and less dependent on the pitch of the pattern. Far-field transmission profiles measured in the same wavelength range from the patterned surfaces show that the scattering increases with the increase of the ratio of pattern depth/height to pitch, similar to the haze measurements conducted with a closed integrating sphere. These profiles show that the angular spread of scattered light in transmission is within 10°, explaining the reason for the relatively low transmission haze in all the patterned surfaces. Simulation results confirm that the nanobump pattern gives higher transmission haze compared to nanodimple pattern. By controlling the ratio of pattern depth/height to pitch of the features on these surfaces, both an increase in optical haze and a balance between total reflection intensity and total transmission intensity can be achieved.

Graphical abstract

Keywords

Metasurface / Reflection haze / Transmission haze / Soft imprint lithography

Cite this article

Download citation ▾
Avijit Maity, Vaswati Biswas, R. Vijaya. Control of visible-range transmission and reflection haze by varying pattern size, shape and depth in flexible metasurfaces. Front. Optoelectron., 2024, 17(3): 25 https://doi.org/10.1007/s12200-024-00125-3

References

[1]
Wu, Y.C. , Chiang, H.T. , Hsu, C.C. : Fabrication of microlens array diffuser films with controllable haze distribution by combination of breath figures and replica molding methods. Opt. Express 16 (24), 19978 (2008)
CrossRef Google scholar
[2]
Oh, S. , Cho, J.W. , Lee, J. , Han, J. , Kim, S.K. , Nam, Y. : A scalable haze-free antireflective hierarchical surface with self-cleaning capability. Adv. Sci. (Weinh.) 9 (27), 2202781 (2022)
CrossRef Google scholar
[3]
Leem, J.W. , Yu, J.S. : Artificial inverted compound eye structured polymer films with light-harvesting and selfcleaning functions for encapsulated III-V solar cell applications. RSC Advances 5 (75), 60804- 60813 (2015)
CrossRef Google scholar
[4]
Hu, J. , Bandyopadhyay, S. , Liu, Y. , Shao, L. : A review on metasurface: from principle to smart metadevices. Front. Phys. (Lausanne) 8, 586087 (2021)
CrossRef Google scholar
[5]
Xie, Y. , Wang, W. , Chen, H. , Konneker, A. , Popa, B.I. , Cummer, S.A. : Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nat. Commun. 5 (1), 5553 (2014)
CrossRef Google scholar
[6]
Jang, M. , Horie, Y. , Shibukawa, A. , Brake, J. , Liu, Y. , Kamali, S.M. , Arbabi, A. , Ruan, H. , Faraon, A. , Yang, C. : Wavefront shaping with disorder-engineered metasurfaces. Nat. Photonics 12 (2), 84- 90 (2018)
CrossRef Google scholar
[7]
Yang, Y. , Wang, W. , Moitra, P. , Kravchenko, I.I. , Briggs, D.P. , Valentine, J. : Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett. 14 (3), 1394- 1399 (2014)
CrossRef Google scholar
[8]
Zhu, H.L. , Cheung, S.W. , Chung, K.L. , Yuk, T.I. : Linear-to-circular polarization conversion using metasurface. IEEE Trans. Antenn. Propag. 61 (9), 4615- 4623 (2013)
CrossRef Google scholar
[9]
Chen, L. , Ma, Q. , Jing, H.B. , Cui, H.Y. , Liu, Y. , Cui, T.J. : Space-energy digital-coding metasurface based on an active amplifier. Phys. Rev. Appl. 11 (5), 054051 (2019)
CrossRef Google scholar
[10]
Lawrence, N. , Trevino, J. , Dal Negro, L. : Aperiodic arrays of active nanopillars for radiation engineering. J. Appl. Phys. 111 (11), 113101 (2012)
CrossRef Google scholar
[11]
Chen, B.H. , Wu, P.C. , Su, V.C. , Lai, Y.C. , Chu, C.H. , Lee, I.C. , Chen, J.W. , Chen, Y.H. , Lan, Y.C. , Kuan, C.H. , Tsai, D.P. : GaN metalens for pixel-level full-color routing at visible light. Nano Lett. 17 (10), 6345- 6352 (2017)
CrossRef Google scholar
[12]
Chen, X. , Huang, L. , Muhlenbernd, H. , Li, G. , Bai, B. , Tan, Q. , Jin, G. , Qiu, C.W. , Zhang, S. , Zentgraf, T. : Dual-polarity plasmonic metalens for visible light. Nat. Commun. 3 (1), 1198 (2012)
CrossRef Google scholar
[13]
Lin, R.J. , Su, V.C. , Wang, S. , Chen, M.K. , Chung, T.L. , Chen, Y.H. , Kuo, H.Y. , Chen, J.W. , Chen, J. , Huang, Y.T. , Wang, J.H. , Chu, C.H. , Wu, P.C. , Li, T. , Wang, Z. , Zhu, S. , Tsai, D.P. : Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol. 14 (3), 227- 231 (2019)
CrossRef Google scholar
[14]
Wang, S. , Wu, P.C. , Su, V.C. , Lai, Y.C. , Chen, M.K. , Kuo, H.Y. , Chen, B.H. , Chen, Y.H. , Huang, T.T. , Wang, J.H. , Lin, R.M. , Kuan, C.H. , Li, T. , Wang, Z. , Zhu, S. , Tsai, D.P. : A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13 (3), 227- 232 (2018)
CrossRef Google scholar
[15]
Hsu, L. , Ndao, A. , Kante, B. : Broadband and linear polarization metasurface carpet cloak in the visible. Opt. Lett. 44 (12), 2978- 2981 (2019)
CrossRef Google scholar
[16]
Hu, J. , Lang, T. , Shen, C. , Shao, L. : Combined Mie resonance metasurface for wideband terahertz absorber. Appl. Sci. (Basel) 8 (9), 1679 (2018)
CrossRef Google scholar
[17]
Liu, X. , Fan, K. , Shadrivov, I.V. , Padilla, W.J. : Experimental realization of a terahertz all-dielectric metasurface absorber. Opt. Express 25 (1), 191- 201 (2017)
CrossRef Google scholar
[18]
Yao, Y. , Shankar, R. , Kats, M.A. , Song, Y. , Kong, J. , Loncar, M. , Capasso, F. : Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Lett. 14 (11), 6526- 6532 (2014)
CrossRef Google scholar
[19]
Yu, N. , Genevet, P. , Kats, M.A. , Aieta, F. , Tetienne, J.P. , Capasso, F. , Gaburro, Z. : Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334 (6054), 333- 337 (2011)
CrossRef Google scholar
[20]
Guo, X. , Pu, M. , Guo, Y. , Ma, X. , Li, X. , Luo, X. : Flexible and tunable dielectric color meta-hologram. Plasmonics 15 (1), 217- 223 (2020)
CrossRef Google scholar
[21]
Ni, X. , Kildishev, A.V. , Shalaev, V.M. : Metasurface holograms for visible light. Nat. Commun. 4 (1), 2807 (2013)
CrossRef Google scholar
[22]
Zheng, G. , Muhlenbernd, H. , Kenney, M. , Li, G. , Zentgraf, T. , Zhang, S. : Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10 (4), 308- 312 (2015)
CrossRef Google scholar
[23]
Mandorlo, F. , Amara, N. , Nguyen, H.S. , Charlety-Meano, A. , Belarouci, A. , Orobtchouk, R. : Color management of semitransparent nano-patterned surfaces. Opt. Eng. 60 (5), 055101 (2021)
CrossRef Google scholar
[24]
Khodadad, I. , Dhindsa, N. , Saini, S.S. : Refractometric sensing using high-order diffraction spots from ordered vertical silicon nanowire arrays. IEEE Photonics J. 8 (2), 4501010 (2016)
CrossRef Google scholar
[25]
Van, E.L. , Rodriguez, I. , Low, H.Y. , Elmouelhi, N. , Lowenhaupt, B. , Natarajan, S. , Lim, C.T. , Prajapati, R. , Vyakarnam, M. , Cooper, K. : Review: Micro-and nanostructured surface engineering for biomedical applications. J. Mater. Res. 28 (2), 165- 174 (2013)
CrossRef Google scholar
[26]
Jeong, S. , McGehee, M.D. , Cui, Y. : All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency. Nat. Commun. 4 (1), 2950 (2013)
CrossRef Google scholar
[27]
Kim, M.C. , Jang, S. , Choi, J. , Kang, S.M. , Choi, M. : Moth-eye structured polydimethylsiloxane films for high-efficiency perovskite solar cells. Nano-Micro. Lett. 11 (1), 53 (2019)
CrossRef Google scholar
[28]
Lozano, G. , Rodriguez, S. , Verschuuren, M. , Gómez Rivas, J. : Metallic nanostructures for efficient LED lighting. Light Sci. Appl. 5 (6), e16080 (2016)
CrossRef Google scholar
[29]
Haldar, A. , Reddy, M.S. , Vijaya, R. : Enhancement of light collection through flexible polymeric films patterned using selfassembled photonic crystals. J. Phys. D. Appl. Phys. 48 (26), 265103 (2015)
CrossRef Google scholar
[30]
Haldar, A. , Reddy, M.S. , Vijaya, R. : Inexpensive graded-index antireflective surfaces for silicon-based optoelectronic devices. J. Opt. Soc. Am. B 33 (11), 2331- 2338 (2016)
CrossRef Google scholar
[31]
Hwang, I. , Choi, D. , Lee, S. , Seo, J.H. , Kim, H.K. , Yoon, I. , Seo, K. : Enhancement of light absorption in photovoltaic devices using textured polydimethylsiloxane stickers. ACS Appl. Mater. Interfaces 9 (25), 21276- 21282 (2017)
CrossRef Google scholar
[32]
Marus, M. , Hubarevich, A. , Fan, W.J. , Wang, H. , Smirnov, A. , Wang, K. , Huang, H. , Sun, X.W. : Optical haze of randomly arranged silver nanowire transparent conductive films with wide range of nanowire diameters. AIP Adv. 8 (3), 035201 (2018)
CrossRef Google scholar
[33]
Choi, M. , Leem, J.W. , Yu, J.S. : Antireflective gradient-refractiveindex material distributed microstructures with high haze and superhydrophilicity for silicon-based optoelectronic applications. RSC Advances 5 (32), 25616- 25624 (2015)
CrossRef Google scholar
[34]
Yun, M.J. , Sim, Y.H. , Lee, D.Y. , Cha, S.I. : Omni-directional light capture in PERC solar cells enhanced by stamping hierarchical structured silicone encapsulation that mimics leaf epidermis. RSC Advances 10 (57), 34837- 34846 (2020)
CrossRef Google scholar
[35]
Yan, Q. , Zhou, Z. , Zhao, X.S. : Inward-growing self-assembly of colloidal crystal films on horizontal substrates. Langmuir 21 (7), 3158- 3164 (2005)
CrossRef Google scholar
[36]
Choi, H.K. , Kim, M.H. , Im, S.H. , Park, O.O. : Fabrication of ordered nanostructured arrays using poly (dimethylsiloxane) replica molds based on three-dimensional colloidal crystals. Adv. Funct. Mater. 19 (10), 1594- 1600 (2009)
CrossRef Google scholar
[37]
Haldar, A. , Joshi, G. , Vijaya, R. : Diffractive metasurfaces with opposite curvatures of unit cells. Opt. Laser Technol. 162, 109309 (2023)
CrossRef Google scholar
[38]
Hassanin, H. , Mohammadkhani, A. , Jiang, K. : Fabrication of hybrid nanostructured arrays using a PDMS/PDMS replication process. Lab Chip 12 (20), 4160- 4167 (2012)
CrossRef Google scholar
[39]
Kuo, S.Y. , Hsieh, M.Y. , Han, H.V. , Lai, F.I. , Chuang, T.Y. , Yu, P. , Lin, C.C. , Kuo, H.C. : Flexible-textured polydimethylsiloxane antireflection structure for enhancing omnidirectional photovoltaic performance of Cu(In, Ga)Se2 solar cells. Opt. Express 22 (3), 2860- 2867 (2014)
CrossRef Google scholar
[40]
Bley, K. , Semmler, J. , Rey, M. , Zhao, C. , Martic, N. , Taylor, R. , Stingl, M. , Vogel, N. : Hierarchical design of metal micro/nanohole array films optimizes transparency and haze factor. Adv. Funct. Mater. 28 (13), 1706965 (2018)
CrossRef Google scholar
[41]
Park, J. , Ham, J. , Lee, I. , Lee, J. : Strain induced subwavelengthstructure for haze-free and highly transparent flexible plastic substrate. Nanoscale 10 (31), 14868- 14876 (2018)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 The Author(s)
AI Summary AI Mindmap
PDF(4420 KB)

Accesses

Citations

Detail

Sections
Recommended

/