Design and simulation investigations on charge transport layers-free in lead-free three absorber layer all-perovskite solar cells
Guangdong Li, Mingxiang Xu, Zhong Chen
Design and simulation investigations on charge transport layers-free in lead-free three absorber layer all-perovskite solar cells
The multiple absorber layer perovskite solar cells (PSCs) with charge transport layers-free (CTLs-free) have drawn widespread research interest due to their simplified architecture and promising photoelectric characteristics. Under the circumstances, the novel design of CTLs-free inversion PSCs with stable and nontoxic three absorber layers (triple Cs3Bi2I9, single MASnI3, double Cs2TiBr6) as optical-harvester has been numerically simulated by utilizing wxAMPS simulation software and achieved high power conversion efficiency (PCE) of 14.8834%. This is owing to the innovative architecture of PSCs favors efficient transport and extraction of more holes and the slender band gap MASnI3 extends the absorption spectrum to the near-infrared periphery compared with the two absorber layers architecture of PSCs. Moreover, the performance of the device with p-type-Cs3Bi2I9/p-type-MASnI3/n-type-Cs2TiBr6 architecture is superior to the one with the p-type-Cs3Bi2I9/n-type-MASnI3/n-type-Cs2TiBr6 architecture due to less carrier recombination and higher carrier life time inside the absorber layers. The simulation results reveal that Cs2TiF6 double perovskite material stands out as the best alternative. Additionally, an excellent PCE of 21.4530% can be obtained with the thicker MASnI3 absorber layer thickness (0.4 µm). Lastly, the highest-performance photovoltaic devices (28.6193%) can be created with the optimized perovskite doping density of around E15 cm3 (Cs3Bi2I9), E18 cm3 (MASnI3), and 1.5E19 cm3 (Cs2TiBr6). This work manifests that the proposed CTLs-free PSCs with multi-absorber layers shall be a relevant reference for forward applications in electro-optical and optoelectronic devices.
Multiple absorber layer PSCs / CTLS-free / Inverted / Narrow-band gap / Simulation
[1] |
Urbani, M., Torre, G.D.L., Nazeeruddin, M.K., Torres, T.: Phthalocyanines and porphyrinoid analogues as hole- and electron-transporting materials for perovskite solar cells. Chem. Soc. Rev. 48(10), 2738–2766 (2019)
|
[2] |
Brenner, T.M., Egger, D.A., Kronik, L., Hodes, G., Cahen, D.: Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1(1), 15007 (2016)
|
[3] |
Ke, W., Mao, L., Stoumpos, C.C., Hoffman, J., Spanopoulos, I., Mohite, A.D., Kanatzidis, M.C.: Compositional and solvent engineering in Dion–Jacobson 2D perovskites boosts solar cell efficiency and stability. Adv. Energy Mater. 9(10), 1803384 (2019)
|
[4] |
Zhu, C., Niu, X., Fu, Y., Li, N., Hu, C., Chen, Y., He, X., Na, G., Liu, P., Zai, H., Ge, Y., Lu, Y., Ke, X., Bai, Y., Yang, S., Chen, P., Li, Y., Sui, M., Zhang, L., Zhou, H., Chen, Q.: Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat. Commun. 10(1), 815 (2019)
|
[5] |
Fang, H., Raissa, R., Abdu-Aguye, M., Adjokatse, S., Blake, G.R., Even, J., Loi, M.A.: Photophysics of organic-inorganic hybrid lead iodide perovskite single crystals. Adv. Funct. Mater. 25(16), 2378–2385 (2015)
|
[6] |
Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)
|
[7] |
Sajid, S., Huang, H., Ji, J., Jiang, H., Duan, M., Liu, X., Liu, B., Li, M.: Quest for robust electron transporting materials towards efficient, hysteresis-free and stable perovskite solar cells. Renew. Sustain. Energy Rev. 152, 111689 (2021)
|
[8] |
Liu, C.M., Chen, J.L., Gao, P.: Enhanced perovskite photovoltaics with non-conjugated polymers: recent developments and future prospects. ACS Appl. Polym. Mater. 6(7), 3573–3610 (2024)
|
[9] |
Zhao, Y., Ma, F., Qu, Z., Yu, S., Shen, T., Deng, H.X., Chu, X., Peng, X., Yuan, Y., Zhang, X., You, J.: Inactive ( PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377(6605), 531–534 (2022)
CrossRef
Google scholar
|
[10] |
Zhao, X., Yang, D., Sun, Y., Li, T., Zhang, L., Yu, L., Zunger, A.: Cu-In halide perovskite solar absorbers. J. Am. Chem. Soc. 139(19), 6718–6725 (2017)
|
[11] |
Jayan, K.D., Sebastian, V.: Comprehensive device modelling and performance analysis of MASnI3 based perovskite solar cells with diverse ETM, HTM and back metal contacts. Sol. Energy 217, 40–48 (2021)
|
[12] |
Lazemi, M., Asgharizadeh, S., Bellucci, S.: A computational approach to interface engineering of lead-free CH3NH3SnI3 highly-efficient perovskite solar cells. Phys. Chem. Chem. Phys. 20(40), 25683–25692 (2018)
|
[13] |
Song, T.B., Yokoyama, T., Aramaki, S., Kanatzidis, M.G.: Performance enhancement of lead-free tin-based perovskite solar cells with reducing atmosphere-assisted dispersible additive. ACS Energy Lett. 2(4), 897–903 (2017)
CrossRef
Google scholar
|
[14] |
Song, T.B., Yokoyama, T., Logsdon, J., Wasielewski, M.R., Aramaki, S., Kanatzidis, M.G.: Piperazine suppresses self-doping in CsSnI3 perovskite solar cells. ACS Appl. Energy Mater. 1(8), 4221–4226 (2018)
|
[15] |
Farhadi, B., Ciprian, M., Zabihi, F., Liu, A.: Influence of contact electrode and light power on the efficiency of tandem perovskite solar cell: numerical simulation. Sol. Energy 226, 161–172 (2021)
|
[16] |
Abedini-Ahangarkola, H., Soleimani-Amiri, S., Rudi, S.G.: Modeling and numerical simulation of high efficiency perovskite solar cell with three active layers. Sol. Energy. 236, 724–732 (2022)
|
[17] |
Haque, M.M., Mahjabin, S., Khan, S., Hossain, M.I., Muhammad, G., Shahiduzzaman, M., Sopian, K., Akhtaruzzaman, M.: Study on the interface defects of eco-friendly perovskite solar cells. Sol. Energy 247, 96–108 (2022)
|
[18] |
Islam, M.T., Jani, M.R., Shorowordi, K.M., Hoque, Z., Gokcek, A.M., Vattipally, V., Nishat, S.S., Ahmed, S.: Numerical simulation studies of Cs3Bi2I9 perovskite solar device with optimal selection of electron and hole transport layers. Optik (Stuttg.) 231, 166417 (2021)
|
[19] |
Mercy, P.A.M., Wilson, K.S.J.: Design of an innovative high-performance lead-free and eco-friendly perovskite solar cell. Appl. Nanosci. 13(5), 3289–3300 (2023)
|
[20] |
Moiz, S.A., Albadwani, S.A., Alshaikh, M.S.: Towards highly efficient cesium titanium halide based lead-free double perovskites solar cell by optimizing the interface layers. Nanomaterials (Basel) 12(19), 3435 (2022)
|
[21] |
Zhang, L., Chen, S., Wang, X., Wang, D., Li, Y., Ai, Q., Sun, X., Chen, J., Li, Y., Jiang, X., Yang, S., Xu, B.: Ambient inkjetprinted high-efficiency perovskite solar cells: manipulating the spreading and crystallization behaviors of picoliter perovskite droplets. SOL RRL. 5(5), 2100106 (2021)
|
[22] |
Yang, B., Wang, M., Hu, X., Zhou, T., Zang, Z.: Highly efficient semitransparent CsPbIBr2 perovskite solar cells via low-temperature processed In2S3 as electron-transport-layer. Nano Energy 57, 718–727 (2019)
CrossRef
Google scholar
|
[23] |
Mahmood, K., Swain, B.S., Amassian, A.: Double-layered ZnO nanostructures for efficient perovskite solar cells. Nanoscale 6(24), 14674–14678 (2014)
CrossRef
Google scholar
|
[24] |
Mohamad Noh, M.F., Arzaee, N.A., Safaei, J., Mohamed, N.A., Kim, H.P., Mohd Yusoff, A.R., Jang, J., Mat Teridi, M.A.: Eliminating oxygen vacancies in SnO2 films via aerosol-assisted chemical vapour deposition for perovskite solar cells and photoelectrochemical cells. J. Alloys Compd. 773, 997–1008 (2019)
|
[25] |
Petrus, M.L., Music, A., Closs, A.C., Bijleveld, J.C., Sirtl, M.T., Hu, Y., Dingemans, T.J., Bein, T., Docampo, P.: Design rules for the preparation of low-cost hole transporting materials for perovskite solar cells with moisture barrier properties. J. Mater. Chem. A Mater. Energy Sustain. 5(48), 25200–25210 (2017)
CrossRef
Google scholar
|
[26] |
Neophytou, M., Griffiths, J., Fraser, J., Kirkus, M., Chen, H., Nielsen, C.B., McCulloch, I.: High mobility, hole transport materials for highly efficient pedot:pss replacement in inverted perovskite solar cells. J. Mater. Chem. C Mater. Opt. Electron. Devices. 5(20), 4940–4945 (2017)
|
[27] |
Hao, L., Li, T., Ma, X., Wu, J., Qiao, L., Wu, X., Hou, G., Pei, H., Wang, X., Zhang, X.: A tin-based perovskite solar cell with an inverted hole-free transport layer to achieve high energy conversion efficiency by SCAPS device simulation. Opt. Quantum Electron. 53(9), 524 (2021)
|
[28] |
Zheng, J., Hu, L., Yun, J.S., Zhang, M., Lau, C.F.J., Bing, J., Deng, X., Ma, Q., Cho, Y., Fu, W., Chen, C., Green, M.A., Huang, S., Ho-Baillie, A.W.Y.: Solution-processed, silver-doped NiOx as hole transporting layer for high-efficiency inverted perovskite solar cells. ACS Appl. Energy Mater. 1(2), 561–570 (2018)
|
[29] |
Lakhdar, N., Hima, A.: Electron transport material effect on performance of perovskite solar cells based on CH3NH3GeI3. Opt. Mater. 99, 109517 (2020)
|
[30] |
Liu, Y., Sun, Y., Rockett, A.: A new simulation software of solar cells—wxAMPS. Sol Energ Mat Sol C. 98, 124–128 (2012)
|
[31] |
Duan, Q., Ji, J., Hong, X., Fu, Y., Wang, Z.Y., Zhou, K., Liu, X., Yang, H., Wang, Z.Y.: Design of hole-transport-material free CH3NH3PbI3/ CsSnI3 all-perovskite heterojunction efficient solar cells by device simulation. Sol. Energy 201, 555–560 (2020)
|
[32] |
Tewari, N., Shivarudraiah, S.B., Halpert, J.E.: Photorechargeable lead-free perovskite lithium-ion batteries using hexagonal Cs3Bi2I9 nanosheets. Nano Lett. 21(13), 5578–5585 (2021)
CrossRef
Google scholar
|
[33] |
Lü, X., Wang, Y., Stoumpos, C.C., Hu, Q., Guo, X., Chen, H., Yang, L., Smith, J.S., Yang, W., Zhao, Y., Xu, H., Kanatzidis, M.G., Jia, Q.: Enhanced structural stability and photo responsiveness of CH3NH3SnI3 perovskite via pressure-induced amorphization and recrystallization. Adv. Mater. 28(39), 8663–8668 (2016)
|
[34] |
Jayan, K.D.: Bandgap tuning and input parameter optimization for lead-free all-inorganic single, double, and ternary perovskite-based solar cells. SOL RRL. 6(4), 2100971 (2022)
|
[35] |
Hao, L., Wu, J.: Replacing the electron-hole transport layer by doping: optimization of tin-based perovskite solar cells from a simulation perspective. Ecs J Solid State Sc. 10(10), 105002 (2021)
|
[36] |
Moiz, S.A., Alahmadi, A.N.M.: Design of dopant and lead-free novel perovskite solar cell for 16.85% efficiency. Polymers (Basel) 13(13), 2110 (2021)
|
[37] |
Cao, R.N., Xu, F., Zhu, J.B., Ge, S., Wang, W.Z., Xu, H.T., Xu, R., Wu, Y.L., Ma, Z.Q., Hong, F., Jiang, Z.M.: Temperature-dependent time response characteristic of photovoltaic performance in planar heterojunction perovskite solar cell. Acta Phys. Sin. 65(18), 188801 (2016)
|
[38] |
Chen, W., Li, D., Chen, S., Liu, S., Shen, Y., Zeng, G., Zhu, X., Zhou, E., Jiang, L., Li, Y., Li, Y.: Spatial distribution recast for organic bulk heterojunctions for high-performance all-inorganic perovskite/organic integrated solar cells. Adv. Energy Mater. 10(35), 2000851 (2020)
|
[39] |
Mamta,
|
[40] |
Chakraborty, K., Choudhury, M.G., Paul, S.: Numerical study of Cs2TiX6 (X = Br-, I-, F- and Cl-) based perovskite solar cell using SCAPS-1D device simulation. Sol. Energy 194, 886–892 (2019)
|
[41] |
Haider, S.Z., Anwar, H., Wang, M.: A comprehensive device modelling of perovskite solar cell with inorganic copper iodide as hole transport material. Semicond. Sci. Technol. 33(3), 035001 (2018)
|
[42] |
Pindolia, G., Shinde, S.M., Jha, P.K.: Optimization of an inorganic lead free RbGeI3 based perovskite solar cell by SCAPS-1D simulation. Sol. Energy 236, 802–821 (2022)
|
[43] |
Du, H., Wang, W., Zhu, J.: Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency. Chin. Phys. B 25(10), 108802 (2016)
|
[44] |
Bag, A., Radhakrishnan, R., Nekovei, R., Jeyakumar, R.: Effect of absorber layer, hole transport layer thicknesses, and its doping density on the performance of perovskite solar cells by device simulation. Sol. Energy 196, 177–182 (2020)
|
/
〈 | 〉 |