Design of an on-chip wavelength conversion device assisted by an erbium-ytterbium co-doped waveguide amplifier

Chen Zhou , Xiwen He , Mingyue Xiao , Deyue Ma , Weibiao Chen , Zhiping Zhou

Front. Optoelectron. ›› 2024, Vol. 17 ›› Issue (2) : 16

PDF (2598KB)
Front. Optoelectron. ›› 2024, Vol. 17 ›› Issue (2) : 16 DOI: 10.1007/s12200-024-00118-2
RESEARCH ARTICLE

Design of an on-chip wavelength conversion device assisted by an erbium-ytterbium co-doped waveguide amplifier

Author information +
History +
PDF (2598KB)

Abstract

In current documented studies, it has been observed that wavelength converters utilizing AlGaAsOI waveguides exhibit suboptimal on-chip wavelength conversion efficiency from the C-band to the 2 µm band, generally falling below –20.0 dB. To address this issue, we present a novel wavelength conversion device assisted by a waveguide amplifier, incorporating both AlGaAs wavelength converter and erbium-ytterbium co-doped waveguide amplifier, thereby achieving a notable conversion efficiency exceeding 0 dB. The noteworthy enhancement in efficiency can be attributed to the specific dispersion design of the AlGaAs wavelength converter, which enables an upsurge in conversion efficiency to –15.54 dB under 100 mW of pump power. Furthermore, the integration of an erbium-ytterbium co-doped waveguide amplifier facilitates a loss compensation of over 15 dB. Avoiding the use of external optical amplifiers, this device enables efficient and high-bandwidth wavelength conversion, showing promising applications in various fields, such as optical communication, sensing, imaging, and beyond.

Graphical abstract

Keywords

Silicon-based optoelectronics / Wavelength conversion / Waveguide amplifier / 2 µm band

Cite this article

Download citation ▾
Chen Zhou, Xiwen He, Mingyue Xiao, Deyue Ma, Weibiao Chen, Zhiping Zhou. Design of an on-chip wavelength conversion device assisted by an erbium-ytterbium co-doped waveguide amplifier. Front. Optoelectron., 2024, 17(2): 16 DOI:10.1007/s12200-024-00118-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang, G.J., Wu, X.L.: A novel CO2 gas analyzer based on IR absorption. Opt. Lasers Eng. 42(2), 219–231 (2004)

[2]

Tan, Q.L., Tang, L.C., Yang, M.L., Xue, C.Y., Zhang, W.D., Liu, J., Xiong, J.J.: Three-gas detection system with IR optical sensor based on NDIR technology. Opt. Lasers Eng. 74, 103–108 (2015)

[3]

Ma, H., Yang, H., Tang, B., Wei, M., Li, J., Wu, J., Zhang, P., Sun, C., Li, L., Lin, H.: Passive devices at 2 µm wavelength on 200 mm CMOS-compatible silicon photonics platform. Chin. Opt. Lett. 19(7), 071301 (2021)

[4]

Liu, Z.X., Chen, Y., Li, Z.H., Kelly, B., Phelan, R., O’Carroll, J., Bradley, T., Wooler, J.P., Wheeler, N.V., Heidt, A.M., Richter, T., Schubert, C., Becker, M., Poletti, F., Petrovich, M.N., Alam, S., Richardson, D.J., Slavík, R.: High-capacity directly modulated optical transmitter for 2-µm spectral region. J. Lightwave Technol. 33(7), 1373–1379 (2015)

[5]

Soref, R.: Enabling 2 µm communications. Nat. Photonics 9(6), 358–359 (2015)

[6]

Kong, D., Liu, Y., Ren, Z., Jung, Y., Kim, C., Chen, Y., Wheeler, N.V., Petrovich, M.N., Pu, M., Yvind, K., Galili, M., Oxenlowe, L.K., Richardson, D.J., Hu, H.: Super-broadband on-chip continuous spectral translation unlocking coherent optical communications beyond conventional telecom bands. Nat. Commun. 13(1), 4139 (2022)

[7]

Kato, T., Muranaka, H., Tanaka, Y., Akiyama, Y., Hoshida, T., Shimizu, S., Kobayashi, T., Kazama, T., Umeki, T., Watanabe, K., Miyamoto, Y.: S plus C plus L-band WDM transmission using 400-Gb/s real-time transceivers extended by PPLN-based wave-length converter. In: Proceedings of 2022 European Conference on Optical Communication (Ecoc) (2022)

[8]

Ophir, N., Lau, R.K.W., Ménard, M., Salem, R., Padmaraju, K., Okawachi, Y., Lipson, M., Gaeta, A.L., Bergman, K.: First Demonstration of a 10-Gb/s RZ end-to-end four-wave-mixing based link at 1884 nm using silicon nanowaveguides. IEEE Photonics Technol. Lett. 24(4), 276–278 (2012)

[9]

Zhao, P., He, Z., Shekhawat, V., Karlsson, M., Andrekson, P.A.: 100-Gbps per-channel all-optical wavelength conversion without pre-amplifiers based on an integrated nanophotonic platform. Nanophotonics 12(17), 3427–3434 (2023)

[10]

Da Ros, F., Gajda, A., da Silva, E.P., Peczek, A., Mai, A., Petermann, K., Zimmermann, L., Oxenlowe, L.K., Galili, M.: Optical phase conjugation in a silicon waveguide with lateral p-i-n diode for nonlinearity compensation. J. Lightwave Technol. 37(2), 323–329 (2019)

[11]

Ettabib, M.A., Hammani, K., Parmigiani, F., Jones, L., Kapsalis, A., Bogris, A., Syvridis, D., Brun, M., Labeye, P., Nicoletti, S., Petropoulos, P.: FWM-based wavelength conversion of 40 Gbaud PSK signals in a silicon germanium waveguide. Opt. Express 21(14), 16683–16689 (2013)

[12]

Liu, X.P., Kuyken, B., Roelkens, G., Baets, R., Osgood, R.M., Jr., Green, W.M.J.: Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation. Nat. Photonics 6(10), 667–671 (2012)

[13]

Agrawal, G.P.: Nonlinear fiber optics: its history and recent progress. J. Opt. Soc. Am. B 28(12), A1–A10 (2011)

[14]

Aitchison, J.S., Hutchings, D.C., Kang, J.U., Stegeman, G.I., Villeneuve, A.: The nonlinear optical properties of AlGaAs at the half band gap. IEEE J. Quantum Electron. 33(3), 341–348 (1997)

[15]

Shoji, I., Kondo, T., Kitamoto, A., Shirane, M., Ito, R.: Absolute scale of second-order nonlinear-optical coefficients. J. Opt. Soc. Am. B 14(9), 2268–2294 (1997)

[16]

Savanier, M., Andronico, A., Lemaître, A., Galopin, E., Manquest, C., Favero, I., Ducci, S., Leo, G.: Large second-harmonic generation at 1.55 µm in oxidized AlGaAs waveguides. Opt. Lett. 36(15), 2955–2957 (2011)

[17]

Stassen, E., Kim, C., Kong, D.M., Hu, H., Galili, M., Oxenlowe, L.K., Yvind, K., Pu, M.H.: Ultra-low power all-optical wavelength conversion of high-speed data signals in high-confinement AlGaAson-insulator microresonators. APL Photonics 4(10), 100804 (2019)

[18]

Pu, M.H., Ottaviano, L., Semenova, E., Yvind, K.: Efficient frequency comb generation in AlGaAs-on-insulator. Optica 3(8), 823–826 (2016)

[19]

Chang, L., Xie, W.Q., Shu, H.W., Yang, Q.F., Shen, B.Q., Boes, A., Peters, J.D., Jin, W.R., Xiang, C., Liu, S.T., Moille, G., Yu, S.P., Wang, X.J., Srinivasan, K., Papp, S.B., Vahala, K., Bowers, J.E.: Ultra-efficient frequency comb generation in AlGaAs-oninsulator microresonators. Nat. Commun. 11(1), 1331 (2020)

[20]

Pu, M.H., Hu, H., Ottaviano, L., Semenova, E., Vukovic, D., Oxenlowe, L.K., Yvind, K.: Ultra-efficient and broadband nonlinear AlGaAs-on-insulator chip for low-power optical signal processing. Laser Photonics Rev. 12(12), 1800111 (2018)

[21]

Chang, L., Boes, A., Pintus, P., Xie, W.Q., Peters, J.D., Kennedy, M.J., Jin, W.R., Guo, X.W., Yu, S.P., Papp, S.B., Bowers, J.E.: Low loss (Al)GaAs on an insulator waveguide platform. Opt. Lett. 44(16), 4075–4078 (2019)

[22]

Bonneville, D.B., Frankis, H.C., Wang, R., Bradley, J.D.B.: Erbium-ytterbium co-doped aluminium oxide waveguide amplifiers fabricated by reactive co-sputtering and wet chemical etching. Opt. Express 28(20), 30130–30140 (2020)

[23]

Zhang, Z., Li, S., Gao, R., Zhang, H., Lin, J., Fang, Z., Wu, R., Wang, M., Wang, Z., Hang, Y., Cheng, Y.: Erbium-ytterbium codoped thin-film lithium niobate integrated waveguide amplifier with a 27 dB internal net gain. Opt. Lett. 48(16), 4344–4347 (2023)

[24]

Zhang, M.J., Lu, J.C., Chen, Y.Z., Wei, Y.H., Shao, Y.Q., Li, Z.K., Ma, F.K., Huang, S.Q., Li, Z., Chen, Z.Q., Wang, R.P., Li, Z.H.: Study on Er3+-Yb3+ co-doped La2O3-Al2O3 glasses for C-band optical waveguide amplifier with high luminous efficiency and low pump threshold. Ceram. Int. 48(21), 32236–32240 (2022)

[25]

Dong, Z., Zhao, Y., Wang, Y., Wei, W., Ding, L., Tang, L., Li, Y.: Gain optimization of an erbium-ytterbium co-doped amplifier via a Si3N4 photonic platform. Opt. Express 31(21), 35419–35430 (2023)

[26]

Adams, R., Spasojevic, M., Chagnon, M., Malekiha, M., Li, J., Plant, D.V., Chen, L.R.: Wavelength conversion of 28 GBaud 16-QAM signals based on four-wave mixing in a silicon nanowire. Opt. Express 22(4), 4083–4090 (2014)

[27]

Wei, J.J., Hu, Z.H., Zhang, M.M., Li, P., Wu, Y., Zeng, C., Tang, M., Xia, J.S.: All-optical wavelength conversion of a 92-Gb/s 16-QAM signal within the C-band in a single thin-film PPLN waveguide. Opt. Express 30(17), 30564–30573 (2022)

[28]

Huang, Y., Tien, E.K., Gao, S., Kalyoncu, S.K., Song, Q., Qian, F., Adas, E., Yildirim, D., Boyraz, O.: Electrical signal-to-noise ratio improvement in indirect detection of mid-IR signals by wavelength conversion in silicon-on-sapphire waveguides. Appl. Phys. Lett. 99(18), 181122 (2011)

[29]

Kylemark, P., Hedekvist, P.O., Sunnerud, H., Karlsson, M., Andrekson, P.A.: Noise characteristics of fiber optical parametric amplifiers. J. Lightwave Technol. 22(2), 409–416 (2004)

RIGHTS & PERMISSIONS

The Author(s) 2024

AI Summary AI Mindmap
PDF (2598KB)

412

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/