Design of an on-chip wavelength conversion device assisted by an erbium-ytterbium co-doped waveguide amplifier

Chen Zhou, Xiwen He, Mingyue Xiao, Deyue Ma, Weibiao Chen, Zhiping Zhou

PDF(2598 KB)
PDF(2598 KB)
Front. Optoelectron. ›› 2024, Vol. 17 ›› Issue (2) : 16. DOI: 10.1007/s12200-024-00118-2
RESEARCH ARTICLE

Design of an on-chip wavelength conversion device assisted by an erbium-ytterbium co-doped waveguide amplifier

Author information +
History +

Abstract

In current documented studies, it has been observed that wavelength converters utilizing AlGaAsOI waveguides exhibit suboptimal on-chip wavelength conversion efficiency from the C-band to the 2 µm band, generally falling below –20.0 dB. To address this issue, we present a novel wavelength conversion device assisted by a waveguide amplifier, incorporating both AlGaAs wavelength converter and erbium-ytterbium co-doped waveguide amplifier, thereby achieving a notable conversion efficiency exceeding 0 dB. The noteworthy enhancement in efficiency can be attributed to the specific dispersion design of the AlGaAs wavelength converter, which enables an upsurge in conversion efficiency to –15.54 dB under 100 mW of pump power. Furthermore, the integration of an erbium-ytterbium co-doped waveguide amplifier facilitates a loss compensation of over 15 dB. Avoiding the use of external optical amplifiers, this device enables efficient and high-bandwidth wavelength conversion, showing promising applications in various fields, such as optical communication, sensing, imaging, and beyond.

Graphical abstract

Keywords

Silicon-based optoelectronics / Wavelength conversion / Waveguide amplifier / 2 µm band

Cite this article

Download citation ▾
Chen Zhou, Xiwen He, Mingyue Xiao, Deyue Ma, Weibiao Chen, Zhiping Zhou. Design of an on-chip wavelength conversion device assisted by an erbium-ytterbium co-doped waveguide amplifier. Front. Optoelectron., 2024, 17(2): 16 https://doi.org/10.1007/s12200-024-00118-2

References

[1]
Zhang, G.J., Wu, X.L.: A novel CO2 gas analyzer based on IR absorption. Opt. Lasers Eng. 42(2), 219–231 (2004)
CrossRef Google scholar
[2]
Tan, Q.L., Tang, L.C., Yang, M.L., Xue, C.Y., Zhang, W.D., Liu, J., Xiong, J.J.: Three-gas detection system with IR optical sensor based on NDIR technology. Opt. Lasers Eng. 74, 103–108 (2015)
CrossRef Google scholar
[3]
Ma, H., Yang, H., Tang, B., Wei, M., Li, J., Wu, J., Zhang, P., Sun, C., Li, L., Lin, H.: Passive devices at 2 µm wavelength on 200 mm CMOS-compatible silicon photonics platform. Chin. Opt. Lett. 19(7), 071301 (2021)
CrossRef Google scholar
[4]
Liu, Z.X., Chen, Y., Li, Z.H., Kelly, B., Phelan, R., O’Carroll, J., Bradley, T., Wooler, J.P., Wheeler, N.V., Heidt, A.M., Richter, T., Schubert, C., Becker, M., Poletti, F., Petrovich, M.N., Alam, S., Richardson, D.J., Slavík, R.: High-capacity directly modulated optical transmitter for 2-µm spectral region. J. Lightwave Technol. 33(7), 1373–1379 (2015)
CrossRef Google scholar
[5]
Soref, R.: Enabling 2 µm communications. Nat. Photonics 9(6), 358–359 (2015)
CrossRef Google scholar
[6]
Kong, D., Liu, Y., Ren, Z., Jung, Y., Kim, C., Chen, Y., Wheeler, N.V., Petrovich, M.N., Pu, M., Yvind, K., Galili, M., Oxenlowe, L.K., Richardson, D.J., Hu, H.: Super-broadband on-chip continuous spectral translation unlocking coherent optical communications beyond conventional telecom bands. Nat. Commun. 13(1), 4139 (2022)
CrossRef Google scholar
[7]
Kato, T., Muranaka, H., Tanaka, Y., Akiyama, Y., Hoshida, T., Shimizu, S., Kobayashi, T., Kazama, T., Umeki, T., Watanabe, K., Miyamoto, Y.: S plus C plus L-band WDM transmission using 400-Gb/s real-time transceivers extended by PPLN-based wave-length converter. In: Proceedings of 2022 European Conference on Optical Communication (Ecoc) (2022)
[8]
Ophir, N., Lau, R.K.W., Ménard, M., Salem, R., Padmaraju, K., Okawachi, Y., Lipson, M., Gaeta, A.L., Bergman, K.: First Demonstration of a 10-Gb/s RZ end-to-end four-wave-mixing based link at 1884 nm using silicon nanowaveguides. IEEE Photonics Technol. Lett. 24(4), 276–278 (2012)
CrossRef Google scholar
[9]
Zhao, P., He, Z., Shekhawat, V., Karlsson, M., Andrekson, P.A.: 100-Gbps per-channel all-optical wavelength conversion without pre-amplifiers based on an integrated nanophotonic platform. Nanophotonics 12(17), 3427–3434 (2023)
CrossRef Google scholar
[10]
Da Ros, F., Gajda, A., da Silva, E.P., Peczek, A., Mai, A., Petermann, K., Zimmermann, L., Oxenlowe, L.K., Galili, M.: Optical phase conjugation in a silicon waveguide with lateral p-i-n diode for nonlinearity compensation. J. Lightwave Technol. 37(2), 323–329 (2019)
CrossRef Google scholar
[11]
Ettabib, M.A., Hammani, K., Parmigiani, F., Jones, L., Kapsalis, A., Bogris, A., Syvridis, D., Brun, M., Labeye, P., Nicoletti, S., Petropoulos, P.: FWM-based wavelength conversion of 40 Gbaud PSK signals in a silicon germanium waveguide. Opt. Express 21(14), 16683–16689 (2013)
CrossRef Google scholar
[12]
Liu, X.P., Kuyken, B., Roelkens, G., Baets, R., Osgood, R.M., Jr., Green, W.M.J.: Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation. Nat. Photonics 6(10), 667–671 (2012)
CrossRef Google scholar
[13]
Agrawal, G.P.: Nonlinear fiber optics: its history and recent progress. J. Opt. Soc. Am. B 28(12), A1–A10 (2011)
CrossRef Google scholar
[14]
Aitchison, J.S., Hutchings, D.C., Kang, J.U., Stegeman, G.I., Villeneuve, A.: The nonlinear optical properties of AlGaAs at the half band gap. IEEE J. Quantum Electron. 33(3), 341–348 (1997)
CrossRef Google scholar
[15]
Shoji, I., Kondo, T., Kitamoto, A., Shirane, M., Ito, R.: Absolute scale of second-order nonlinear-optical coefficients. J. Opt. Soc. Am. B 14(9), 2268–2294 (1997)
CrossRef Google scholar
[16]
Savanier, M., Andronico, A., Lemaître, A., Galopin, E., Manquest, C., Favero, I., Ducci, S., Leo, G.: Large second-harmonic generation at 1.55 µm in oxidized AlGaAs waveguides. Opt. Lett. 36(15), 2955–2957 (2011)
CrossRef Google scholar
[17]
Stassen, E., Kim, C., Kong, D.M., Hu, H., Galili, M., Oxenlowe, L.K., Yvind, K., Pu, M.H.: Ultra-low power all-optical wavelength conversion of high-speed data signals in high-confinement AlGaAson-insulator microresonators. APL Photonics 4(10), 100804 (2019)
CrossRef Google scholar
[18]
Pu, M.H., Ottaviano, L., Semenova, E., Yvind, K.: Efficient frequency comb generation in AlGaAs-on-insulator. Optica 3(8), 823–826 (2016)
CrossRef Google scholar
[19]
Chang, L., Xie, W.Q., Shu, H.W., Yang, Q.F., Shen, B.Q., Boes, A., Peters, J.D., Jin, W.R., Xiang, C., Liu, S.T., Moille, G., Yu, S.P., Wang, X.J., Srinivasan, K., Papp, S.B., Vahala, K., Bowers, J.E.: Ultra-efficient frequency comb generation in AlGaAs-oninsulator microresonators. Nat. Commun. 11(1), 1331 (2020)
CrossRef Google scholar
[20]
Pu, M.H., Hu, H., Ottaviano, L., Semenova, E., Vukovic, D., Oxenlowe, L.K., Yvind, K.: Ultra-efficient and broadband nonlinear AlGaAs-on-insulator chip for low-power optical signal processing. Laser Photonics Rev. 12(12), 1800111 (2018)
CrossRef Google scholar
[21]
Chang, L., Boes, A., Pintus, P., Xie, W.Q., Peters, J.D., Kennedy, M.J., Jin, W.R., Guo, X.W., Yu, S.P., Papp, S.B., Bowers, J.E.: Low loss (Al)GaAs on an insulator waveguide platform. Opt. Lett. 44(16), 4075–4078 (2019)
CrossRef Google scholar
[22]
Bonneville, D.B., Frankis, H.C., Wang, R., Bradley, J.D.B.: Erbium-ytterbium co-doped aluminium oxide waveguide amplifiers fabricated by reactive co-sputtering and wet chemical etching. Opt. Express 28(20), 30130–30140 (2020)
CrossRef Google scholar
[23]
Zhang, Z., Li, S., Gao, R., Zhang, H., Lin, J., Fang, Z., Wu, R., Wang, M., Wang, Z., Hang, Y., Cheng, Y.: Erbium-ytterbium codoped thin-film lithium niobate integrated waveguide amplifier with a 27 dB internal net gain. Opt. Lett. 48(16), 4344–4347 (2023)
CrossRef Google scholar
[24]
Zhang, M.J., Lu, J.C., Chen, Y.Z., Wei, Y.H., Shao, Y.Q., Li, Z.K., Ma, F.K., Huang, S.Q., Li, Z., Chen, Z.Q., Wang, R.P., Li, Z.H.: Study on Er3+-Yb3+ co-doped La2O3-Al2O3 glasses for C-band optical waveguide amplifier with high luminous efficiency and low pump threshold. Ceram. Int. 48(21), 32236–32240 (2022)
CrossRef Google scholar
[25]
Dong, Z., Zhao, Y., Wang, Y., Wei, W., Ding, L., Tang, L., Li, Y.: Gain optimization of an erbium-ytterbium co-doped amplifier via a Si3N4 photonic platform. Opt. Express 31(21), 35419–35430 (2023)
CrossRef Google scholar
[26]
Adams, R., Spasojevic, M., Chagnon, M., Malekiha, M., Li, J., Plant, D.V., Chen, L.R.: Wavelength conversion of 28 GBaud 16-QAM signals based on four-wave mixing in a silicon nanowire. Opt. Express 22(4), 4083–4090 (2014)
CrossRef Google scholar
[27]
Wei, J.J., Hu, Z.H., Zhang, M.M., Li, P., Wu, Y., Zeng, C., Tang, M., Xia, J.S.: All-optical wavelength conversion of a 92-Gb/s 16-QAM signal within the C-band in a single thin-film PPLN waveguide. Opt. Express 30(17), 30564–30573 (2022)
CrossRef Google scholar
[28]
Huang, Y., Tien, E.K., Gao, S., Kalyoncu, S.K., Song, Q., Qian, F., Adas, E., Yildirim, D., Boyraz, O.: Electrical signal-to-noise ratio improvement in indirect detection of mid-IR signals by wavelength conversion in silicon-on-sapphire waveguides. Appl. Phys. Lett. 99(18), 181122 (2011)
CrossRef Google scholar
[29]
Kylemark, P., Hedekvist, P.O., Sunnerud, H., Karlsson, M., Andrekson, P.A.: Noise characteristics of fiber optical parametric amplifiers. J. Lightwave Technol. 22(2), 409–416 (2004)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 The Author(s) 2024
AI Summary AI Mindmap
PDF(2598 KB)

Accesses

Citations

Detail

Sections
Recommended

/