Coherent beam combining of two all-PM thulium-doped fiber chirped pulse amplifiers

Bo Ren, Hongxiang Chang, Can Li, Tao Wang, Kaikai Jin, Jiayi Zhang, Kun Guo, Rongtao Su, Jinyong Leng, Pu Zhou

PDF(2663 KB)
PDF(2663 KB)
Front. Optoelectron. ›› 2024, Vol. 17 ›› Issue (2) : 14. DOI: 10.1007/s12200-024-00117-3
RESEARCH ARTICLE

Coherent beam combining of two all-PM thulium-doped fiber chirped pulse amplifiers

Author information +
History +

Abstract

In this paper, we report a coherent beam combining (CBC) system that involves two thulium-doped all-polarization maintaining (PM) fiber chirped pulse amplifiers. Through phase-locking the two channels via a fiber stretcher by using the stochastic parallel gradient descent (SPGD) algorithm, a maximum average power of 265 W is obtained, with a CBC efficiency of 81% and a residual phase error of λ/17. After de-chirping by a pair of diffraction gratings, the duration of the combined laser pulse is compressed to 690 fs. Taking into account the compression efficiency of 90% and the main peak energy proportion of 91%, the corresponding peak power is calculated to be 4 MW. The laser noise characteristics before and after CBC are examined, and the results indicate that the CBC would degrade the low frequency relative intensity noise (RIN), of which the integration is 1.74% in [100 Hz, 2 MHz] at the maximum combined output power. In addition, the effects of the nonlinear spectrum broadening during chirped pulse amplification on the CBC efficiency are also investigated, showing that a higher extent of pulse stretching is effective in alleviating the spectrum broadening and realizing a higher output power with decent combining efficiency.

Graphical abstract

Keywords

Coherent beam combining / Thulium-doped fiber laser / High-average power / Chirped pulse amplifier

Cite this article

Download citation ▾
Bo Ren, Hongxiang Chang, Can Li, Tao Wang, Kaikai Jin, Jiayi Zhang, Kun Guo, Rongtao Su, Jinyong Leng, Pu Zhou. Coherent beam combining of two all-PM thulium-doped fiber chirped pulse amplifiers. Front. Optoelectron., 2024, 17(2): 14 https://doi.org/10.1007/s12200-024-00117-3

References

[1]
Yao, C., Jia, Z., Li, Z., Jia, S., Zhao, Z., Zhang, L., Feng, Y., Qin, G., Ohishi, Y., Qin, W.: High-power mid-infrared supercontinuum laser source using fluorotellurite fiber. Optica 5(10), 1264–1270 (2018)
CrossRef Google scholar
[2]
Jackson, S.D.: Towards high-power mid-infrared emission from a fibre laser. Nat. Photonics 6(7), 423–431 (2012)
CrossRef Google scholar
[3]
Toor, F., Jackson, S., Shang, X., Arafin, S., Yang, H.: Mid-infrared lasers for medical applications: introduction to the feature issue. Biomed. Opt. Express 9(12), 6255–6257 (2018)
CrossRef Google scholar
[4]
Kalaycioglu, H., Elahi, P., Akcaalan, O., Ilday, F.O.: High-repetition-rate ultrafast fiber lasers for material processing. IEEE J. Sel. Top. Quantum Electron. 24(3), 1–12 (2018)
CrossRef Google scholar
[5]
Zhou, J., Pan, W., Qi, W., Cao, X., Cheng, Z., Feng, Y.: Ultrafast Raman fiber laser: a review and prospect. PhotoniX 3(1), 18 (2022)
CrossRef Google scholar
[6]
Wang, M., Wu, H., Ouyang, D., Liu, M., Chen, Y., Zhao, J., Liu, X., Ruan, S.: High power noise-like pulse at 2 µm and its applications in mid-IR Raman light and flat supercontinuum. Infrared Phys. Technol. 131, 104635 (2023)
CrossRef Google scholar
[7]
Liu, J., Liu, C., Shi, H., Wang, P.: High-power linearly-polarized picosecond thulium-doped all-fiber master-oscillator power-amplifier. Opt. Express 24(13), 15005–15011 (2016)
CrossRef Google scholar
[8]
Ren, Z., Fu, Q., Xu, L., Price, J.H.V., Alam, S.U., Richardson, D.J.: Compact, high repetition rate, 4.2 MW peak power, 1925 nm, thulium-doped fiber chirped-pulse amplification system with dissipative soliton seed laser. Opt. Express 27(25), 36741–36749 (2019)
CrossRef Google scholar
[9]
Lenski, M., Heuermann, T., Gebhardt, M., Wang, Z., Gaida, C., Jauregui, C., Limpert, J.: Inband-pumped, high-power thuliumdoped fiber amplifiers for an ultrafast pulsed operation. Opt. Express 30(24), 44270–44282 (2022)
CrossRef Google scholar
[10]
Ren, C., Shen, Y., Zheng, Y., Mao, Y., Wang, F., Shen, D., Zhu, H.: Widely-tunable all-fiber Tm doped MOPA with > 1 kW of output power. Opt. Express 31(14), 22733–22739 (2023)
CrossRef Google scholar
[11]
Xing, Y.B., Liao, L., Bu, F., Wang, Y.B., Peng, J.G., Dai, N.L., Li, J.Y.: Fabrication of Tm-doped fibers for high power and 121 W output all-fiber Tm-doped fiber laser. Chin. Phys. Lett. 32(3), 034204 (2015)
CrossRef Google scholar
[12]
Gaida, C., Gebhardt, M., Heuermann, T., Stutzki, F., Jauregui, C., Limpert, J.: Ultrafast thulium fiber laser system emitting more than 1 kW of average power. Opt. Lett. 43(23), 5853–5856 (2018)
CrossRef Google scholar
[13]
Gaida, C., Gebhardt, M., Stutzki, F., Jauregui, C., Limpert, J., Tunnermann, A.: Thulium-doped fiber chirped-pulse amplification system with 2 GW of peak power. Opt. Lett. 41(17), 4130–4133 (2016)
CrossRef Google scholar
[14]
Wang, Z., Heuermann, T., Gebhardt, M., Gaida, C., Jauregui, C., Limpert, J., Dong, L., Zervas, M.N.: 108 W average power ultrashort pulses with GW-level peak power from a Tm-doped fiber CPA system. In: Fiber Lasers XVII, p. 112600K. Technology and Systems (2020)
CrossRef Google scholar
[15]
Stutzki, F., Gaida, C., Gebhardt, M., Jansen, F., Jauregui, C., Limpert, J., Tunnermann, A.: Tm-based fiber-laser system with more than 200 MW peak power. Opt. Lett. 40(1), 9–12 (2015)
CrossRef Google scholar
[16]
Stutzki, F., Gaida, C., Gebhardt, M., Jansen, F., Wienke, A., Zeitner, U., Fuchs, F., Jauregui, C., Wandt, D., Kracht, D., Limpert, J., Tunnermann, A.: 152 W average power Tm-doped fiber CPA system. Opt. Lett. 39(16), 4671–4674 (2014)
CrossRef Google scholar
[17]
Gebhardt, M., Gaida, C., Stutzki, F., Hadrich, S., Jauregui, C., Limpert, J., Tunnermann, A.: Impact of atmospheric molecular absorption on the temporal and spatial evolution of ultra-short optical pulses. Opt. Express 23(11), 13776–13787 (2015)
CrossRef Google scholar
[18]
Qiao, T., Cheng, H., Wen, X., Wang, W., Lin, W., Zhou, Y., Guo, Y., Liu, Y., Yang, Z.: High-power 2 GHz fs pulsed all-fiber amplified laser system at 20 µm. Opt. Lett. 44(24), 6001–6004 (2019)
CrossRef Google scholar
[19]
Wang, T., Li, C., Ren, B., Guo, K., Wu, J., Leng, J., Zhou, P.: High-power femtosecond laser generation from an all-fiber linearly polarized chirped pulse amplifier. High Power Laser Sci. Eng. 11, e25 (2023)
CrossRef Google scholar
[20]
Ren, B., Li, C., Wang, T., Guo, K., Wu, J., Zhou, P.: Thuliumdoped all-PM fiber chirped pulse amplifier delivering 314 W average power. High Power Laser Sci. Eng. 11, e73 (2023)
CrossRef Google scholar
[21]
Fsaifes, I., Daniault, L., Bellanger, S., Veinhard, M., Bourderionnet, J., Larat, C., Lallier, E., Durand, E., Brignon, A., Chanteloup, J.C.: Coherent beam combining of 61 femtosecond fiber amplifiers. Opt. Express 28(14), 20152–20161 (2020)
CrossRef Google scholar
[22]
Chang, Q., Hou, T., Long, J., Deng, Y., Chang, H., Ma, P., Su, R., Ma, Y., Zhou, P.: Experimental phase stabilization of a 397-channel laser beam array via image processing in dynamic noise environment. J. Lightwave Technol. 40(19), 6542–6547 (2022)
CrossRef Google scholar
[23]
Jiang, M., Wu, H., An, Y., Hou, T., Chang, Q., Huang, L., Li, J., Su, R., Zhou, P.: Fiber laser development enabled by machine learning: review and prospect. PhotoniX. 3(1), 16 (2022)
CrossRef Google scholar
[24]
McNaught, S.J., Thielen, P.A., Adams, L.N., Ho, J.G., Johnson, A.M., Machan, J.P., Rothenberg, J.E., Chun-Ching, S., Shimabukuro, D.M., Wacks, M.P., Weber, M.E., Goodno, G.D.: Scalable coherent combining of kilowatt fiber amplifiers into a 2.4-kW beam. IEEE J. Sel. Top. Quantum Electron. 20(5), 174–181 (2014)
CrossRef Google scholar
[25]
Antier, M., Bourderionnet, J., Larat, C., Lallier, E., Lenormand, E., Primot, J., Brignon, A.: kHz closed loop interferometric technique for coherent fiber beam combining. IEEE J. Sel. Top. Quantum Electron. 20(5), 182–187 (2014)
CrossRef Google scholar
[26]
Yang, K., Zhu, G., Hao, Q., Huang, K., Laurat, J., Li, W., Zeng, H.: Coherent polarization beam combination by microcontroller-based phase-locking method. IEEE Photonics Technol. Lett. 28(20), 2129–2132 (2016)
CrossRef Google scholar
[27]
Chang, H., Chang, Q., Xi, J., Hou, T., Su, R., Ma, P., Wu, J., Li, C., Jiang, M., Ma, Y., Zhou, P.: First experimental demonstration of coherent beam combining of more than 100 beams. Photon. Res. 8(12), 1943–1948 (2020)
CrossRef Google scholar
[28]
Müller, M., Aleshire, C., Klenke, A., Haddad, E., Legare, F., Tunnermann, A., Limpert, J.: 10.4 kW coherently combined ultrafast fiber laser. Opt. Lett. 45(11), 3083–3086 (2020)
CrossRef Google scholar
[29]
Stark, H., Buldt, J., Muller, M., Klenke, A., Limpert, J.: 1 kW, 10 mJ, 120 fs coherently combined fiber CPA laser system. Opt. Lett. 46(5), 969–972 (2021)
CrossRef Google scholar
[30]
Yu, H.L., Zhang, Z.X., Wang, X.L., Su, R.T., Zhang, H.W., Ma, Y.X., Zhou, P., Chen, J.B.: High average power coherent femtosecond pulse combining system based on an all fiber active control method. Laser Phys. Lett. 15(7), 075101 (2018)
CrossRef Google scholar
[31]
Stark, H., Benner, M., Buldt, J., Klenke, A., Limpert, J.: Pulses of 32 mJ and 158 fs at 20-kHz repetition rate from a spatiotemporally combined fiber laser system. Opt. Lett. 48(11), 3007–3010 (2023)
CrossRef Google scholar
[32]
Peng, S., Wang, Z., Hu, F., Li, Z., Zhang, Q., Lu, P.: 260 fs, 403 W coherently combined fiber laser with precise high-order dispersion management. Front Optoelectron. 17(1), 3 (2024)
CrossRef Google scholar
[33]
Honzatko, P., Baravets, Y., Todorov, F., Peterka, P., Becker, M.: Coherently combined power of 20 W at 2000 nm from a pair of thulium-doped fiber lasers. Laser Phys. Lett. 10(9), 095104 (2013)
CrossRef Google scholar
[34]
Oermann, M.R., Carmody, N., Hemming, A., Rees, S., Simakov, N., Swain, R., Boyd, K., Davidson, A., Corena, L., Stepanov, D., Haub, J.: Coherent beam combination of four holmium amplifiers with phase control via a direct digital synthesizer chip. Opt. Express 26(6), 6715–6723 (2018)
CrossRef Google scholar
[35]
Wang, X., Zhou, P., Wang, X., Ma, Y., Su, R., Xiao, H., Si, L., Liu, Z.: 108 W coherent beam combining of two single-frequency Tm-doped fiber MOPAs. Laser Phys. Lett. 11(10), 105101 (2014)
CrossRef Google scholar
[36]
Heuermann, T., Wang, Z., Lenski, M., Gebhardt, M., Gaida, C., Abdelaal, M., Buldt, J., Muller, M., Klenke, A., Limpert, J.: Ultrafast Tm-doped fiber laser system delivering 1.65-mJ, sub-100-fs pulses at a 100-kHz repetition rate. Opt. Lett. 47(12), 3095–3098 (2022)
CrossRef Google scholar
[37]
Jolivet, V., Bourdon, P., Bennai, B., Lombard, L., Goular, D., Pourtal, E., Canat, G., Jaouen, Y., Moreau, B., Vasseur, O.: Beam shaping of single-mode and multimode fiber amplifier arrays for propagation through atmospheric turbulence. IEEE J. Sel. Top. Quantum Electron. 15(2), 257–268 (2009)
CrossRef Google scholar
[38]
Yu, H.L., Ma, P.F., Wang, X.L., Su, R.T., Zhou, P., Chen, J.B.: Influence of temporal–spectral effects on ultrafast fiber coherent polarization beam combining system. Laser Phys. Lett. 12(10), 105301 (2015)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 The Author(s) 2024
AI Summary AI Mindmap
PDF(2663 KB)

Accesses

Citations

Detail

Sections
Recommended

/