Efficient single-pixel imaging based on a compact fiber laser array and untrained neural network

Wenchang Lai , Guozhong Lei , Qi Meng , Yan Wang , Yanxing Ma , Hao Liu , Wenda Cui , Kai Han

Front. Optoelectron. ›› 2024, Vol. 17 ›› Issue (1) : 9

PDF (2348KB)
Front. Optoelectron. ›› 2024, Vol. 17 ›› Issue (1) : 9 DOI: 10.1007/s12200-024-00112-8
RESEARCH ARTICLE

Efficient single-pixel imaging based on a compact fiber laser array and untrained neural network

Author information +
History +
PDF (2348KB)

Abstract

This paper presents an efficient scheme for single-pixel imaging (SPI) utilizing a phase-controlled fiber laser array and an untrained deep neural network. The fiber lasers are arranged in a compact hexagonal structure and coherently combined to generate illuminating light fields. Through the utilization of high-speed electro-optic modulators in each individual fiber laser module, the randomly modulated fiber laser array enables rapid speckle projection onto the object of interest. Furthermore, the untrained deep neural network is incorporated into the image reconstructing process to enhance the quality of the reconstructed images. Through simulations and experiments, we validate the feasibility of the proposed method and successfully achieve high-quality SPI utilizing the coherent fiber laser array at a sampling ratio of 1.6%. Given its potential for high emitting power and rapid modulation, the SPI scheme based on the fiber laser array holds promise for broad applications in remote sensing and other applicable fields.

Graphical abstract

Keywords

Single-pixel imaging / Fiber laser array / Deep learning / Remote sensing

Cite this article

Download citation ▾
Wenchang Lai, Guozhong Lei, Qi Meng, Yan Wang, Yanxing Ma, Hao Liu, Wenda Cui, Kai Han. Efficient single-pixel imaging based on a compact fiber laser array and untrained neural network. Front. Optoelectron., 2024, 17(1): 9 DOI:10.1007/s12200-024-00112-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Edgar, M.P., Gibson, G.M., Padgett, M.J.: Principles and prospects for single-pixel imaging. Nat. Photonics 13(1), 13–20 (2019)

[2]

Lu, T., Qiu, Z., Zhang, Z., Zhong, J.: Comprehensive comparison of single-pixel imaging methods. Opt. Lasers Eng. 134, 106301 (2020)

[3]

Jiang, T., Bai, Y., Tan, W., Zhu, X., Huang, X., Nan, S., Fu, X.: Ghost imaging Lidar system for remote imaging. Opt. Express 31(9), 15107–15117 (2023)

[4]

Gong, W., Zhao, C., Yu, H., Chen, M., Xu, W., Han, S.: Three-dimensional ghost imaging Lidar via sparsity constraint. Sci. Rep. 6(1), 26133 (2016)

[5]

Edgar, M.P., Gibson, G.M., Bowman, R.W., Sun, B., Radwell, N., Mitchell, K.J., Welsh, S.S., Padgett, M.J.: Simultaneous real-time visible and infrared video with single-pixel detectors. Sci. Rep. 5(1), 10669 (2015)

[6]

Greenberg, J., Krishnamurthy, K., Brady, D.: Compressive single-pixel snapshot X-ray diffraction imaging. Opt. Lett. 39(1), 111–114 (2014)

[7]

Zhang, A., He, Y., Wu, L., Chen, L., Wang, B.: Tabletop X-ray ghost imaging with ultra-low radiation. Optica 5(4), 374–377 (2018)

[8]

Chan, W.L., Charan, K., Takhar, D., Kelly, K.F., Baraniuk, R.G., Mittleman, D.M.: A single-pixel terahertz imaging system based on compressed sensing. Appl. Phys. Lett. 93(12), 121105 (2008)

[9]

Watts, C.M., Shrekenhamer, D., Montoya, J., Lipworth, G., Hunt, J., Sleasman, T., Krishna, S., Smith, D.R., Padilla, W.J.: Terahertz compressive imaging with metamaterial spatial light modulators. Nat. Photonics 8(8), 605–609 (2014)

[10]

Zuo, Y., Li, B., Zhao, Y., Jiang, Y., Chen, Y.C., Chen, P., Jo, G.B., Liu, J., Du, S.: All-optical neural network with nonlinear activation functions. Optica 6(9), 1132–1137 (2019)

[11]

Jiao, S., Feng, J., Gao, Y., Lei, T., Xie, Z., Yuan, X.: Optical machine learning with incoherent light and a single-pixel detector. Opt. Lett. 44(21), 5186–5189 (2019)

[12]

Jiao, S., Feng, J., Gao, Y., Lei, T., Yuan, X.: Visual cryptography in single-pixel imaging. Opt. Express 28(5), 7301–7313 (2020)

[13]

Zheng, P., Li, J., Li, Z., Ge, M., Zhang, S., Zheng, G., Liu, H.C.: Compressive imaging encryption with secret sharing meta-surfaces. Adv. Opt. Mater. 10(15), 2200257 (2022)

[14]

Sun, B., Edgar, M.P., Bowman, R., Vittert, L.E., Welsh, S., Bowman, A., Padgett, M.J.: 3D computational imaging with single-pixel detectors. Science 340(6134), 844–847 (2013)

[15]

Sun, M.J., Edgar, M.P., Gibson, G.M., Sun, B., Radwell, N., Lamb, R., Padgett, M.J.: Single-pixel three-dimensional imaging with time-based depth resolution. Nat. Commun. 7(1), 12010 (2016)

[16]

Jiang, W., Yin, Y., Jiao, J., Zhao, X., Sun, B.: 2,000,000 fps 2D and 3D imaging of periodic or reproducible scenes with single-pixel detectors. Photon. Res. 10(9), 2157–2164 (2022)

[17]

Zha, L., Meng, W., Shi, D., Huang, J., Yuan, K., Yang, W., Chen, Y., Wang, Y.: Complementary moment detection for tracking a fast-moving object using dual single-pixel detectors. Opt. Lett. 47(4), 870–873 (2022)

[18]

Sun, S., Liu, W.T., Lin, H.Z., Zhang, E.F., Liu, J.Y., Li, Q., Chen, P.X.: Multi-scale adaptive computational ghost imaging. Sci. Rep. 6(1), 37013 (2016)

[19]

Huang, J., Shi, D.: Multispectral computational ghost imaging with multiplexed illumination. J. Opt. 19(7), 075701 (2017)

[20]

Xu, Z.H., Chen, W., Penuelas, J., Padgett, M., Sun, M.J.: 1000 fps computational ghost imaging using LED-based structured illumination. Opt. Express 26(3), 2427–2434 (2018)

[21]

Balaguer, E.S., Carmona, P.L., Chabert, C., Pla, F., Lancis, J., Tajahuerce, E.: Low-cost single-pixel 3D imaging by using an LED array. Opt. Express 26(12), 15623–15631 (2018)

[22]

Kohno, Y., Komatsu, K., Tang, R., Ozeki, Y., Nakano, Y., Tanemura, T.: Ghost imaging using a large-scale silicon photonic phased array chip. Opt. Express 27(3), 3817–3823 (2019)

[23]

Fukui, T., Kohno, Y., Tang, R., Nakano, Y., Tanemura, T.: Single-pixel imaging using multimode fiber and silicon photonic phased array. J. Lightwave Technol. 39(3), 839–844 (2021)

[24]

Ferri, F., Magatti, D., Lugiato, L.A., Gatti, A.: Differential ghost imaging. Phys. Rev. Lett. 104(25), 253603 (2010)

[25]

Sun, B., Welsh, S.S., Edgar, M.P., Shapiro, J.H., Padgett, M.J.: Normalized ghost imaging. Opt. Express 20(15), 16892–16901 (2012)

[26]

Duarte, M.F., Davenport, M.A., Takhar, D., Laska, J.N., Sun, T., Kelly, K.F., Baraniuk, R.G.: Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 25(2), 83–91 (2008)

[27]

Lyu, M., Wang, W., Wang, H., Wang, H., Li, G., Chen, N., Situ, G.: Deep-learning-based ghost imaging. Sci. Rep. 7(1), 17865 (2017)

[28]

Wang, F., Wang, C., Deng, C., Han, S., Situ, G.: Single-pixel imaging using physics enhanced deep learning. Photon. Res. 10(1), 104–110 (2022)

[29]

Wang, F., Wang, C., Chen, M., Gong, W., Zhang, Y., Han, S., Situ, G.: Far-field super-resolution ghost imaging with a deep neural network constraint. Light Sci. Appl. 11(1), 1 (2022)

[30]

Wu, H., Wang, C., Gong, W.: Ghost imaging via sparse structured illumination source. Opt. Express 26(4), 4183–4191 (2018)

[31]

Liu, C., Chen, J., Liu, J., Han, X.: High frame-rate computational ghost imaging system using an optical fiber phased array and a low-pixel APD array. Opt. Express 26(8), 10048–10064 (2018)

[32]

Lai, W., Lei, G., Meng, Q., Ma, Y., Cui, W., Shi, D., Liu, H., Wang, Y., Han, K.: Ghost imaging based on Fermat spiral laser array designed for remote sensing. Opt. Express 31(22), 36656–36667 (2023)

[33]

Chang, H., Chang, Q., Xi, J., Hou, T., Su, R., Ma, P., Wu, J., Li, C., Jiang, M., Ma, Y., Zhou, P.: First experimental demonstration of coherent beam combining of more than 100 beams. Photon. Res. 8(12), 1943–1948 (2020)

[34]

Wu, J., Ma, Y., Ma, P., Su, R., Li, C., Jiang, M., Chang, H., Ren, S., Chang, Q., Wang, T., Ren, B., Zhou, P.: Fiber laser coherent beam combination of 20 kW class high power output. Infrared Laser Eng. 50, 20210621 (2021)

RIGHTS & PERMISSIONS

The Author(s) 2024

AI Summary AI Mindmap
PDF (2348KB)

526

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/