Efficient single-pixel imaging based on a compact fiber laser array and untrained neural network

Wenchang Lai, Guozhong Lei, Qi Meng, Yan Wang, Yanxing Ma, Hao Liu, Wenda Cui, Kai Han

PDF(2348 KB)
PDF(2348 KB)
Front. Optoelectron. ›› 2024, Vol. 17 ›› Issue (1) : 9. DOI: 10.1007/s12200-024-00112-8
RESEARCH ARTICLE

Efficient single-pixel imaging based on a compact fiber laser array and untrained neural network

Author information +
History +

Abstract

This paper presents an efficient scheme for single-pixel imaging (SPI) utilizing a phase-controlled fiber laser array and an untrained deep neural network. The fiber lasers are arranged in a compact hexagonal structure and coherently combined to generate illuminating light fields. Through the utilization of high-speed electro-optic modulators in each individual fiber laser module, the randomly modulated fiber laser array enables rapid speckle projection onto the object of interest. Furthermore, the untrained deep neural network is incorporated into the image reconstructing process to enhance the quality of the reconstructed images. Through simulations and experiments, we validate the feasibility of the proposed method and successfully achieve high-quality SPI utilizing the coherent fiber laser array at a sampling ratio of 1.6%. Given its potential for high emitting power and rapid modulation, the SPI scheme based on the fiber laser array holds promise for broad applications in remote sensing and other applicable fields.

Graphical abstract

Keywords

Single-pixel imaging / Fiber laser array / Deep learning / Remote sensing

Cite this article

Download citation ▾
Wenchang Lai, Guozhong Lei, Qi Meng, Yan Wang, Yanxing Ma, Hao Liu, Wenda Cui, Kai Han. Efficient single-pixel imaging based on a compact fiber laser array and untrained neural network. Front. Optoelectron., 2024, 17(1): 9 https://doi.org/10.1007/s12200-024-00112-8

References

[1]
Edgar, M.P., Gibson, G.M., Padgett, M.J.: Principles and prospects for single-pixel imaging. Nat. Photonics 13(1), 13–20 (2019)
CrossRef Google scholar
[2]
Lu, T., Qiu, Z., Zhang, Z., Zhong, J.: Comprehensive comparison of single-pixel imaging methods. Opt. Lasers Eng. 134, 106301 (2020)
CrossRef Google scholar
[3]
Jiang, T., Bai, Y., Tan, W., Zhu, X., Huang, X., Nan, S., Fu, X.: Ghost imaging Lidar system for remote imaging. Opt. Express 31(9), 15107–15117 (2023)
CrossRef Google scholar
[4]
Gong, W., Zhao, C., Yu, H., Chen, M., Xu, W., Han, S.: Three-dimensional ghost imaging Lidar via sparsity constraint. Sci. Rep. 6(1), 26133 (2016)
CrossRef Google scholar
[5]
Edgar, M.P., Gibson, G.M., Bowman, R.W., Sun, B., Radwell, N., Mitchell, K.J., Welsh, S.S., Padgett, M.J.: Simultaneous real-time visible and infrared video with single-pixel detectors. Sci. Rep. 5(1), 10669 (2015)
CrossRef Google scholar
[6]
Greenberg, J., Krishnamurthy, K., Brady, D.: Compressive single-pixel snapshot X-ray diffraction imaging. Opt. Lett. 39(1), 111–114 (2014)
CrossRef Google scholar
[7]
Zhang, A., He, Y., Wu, L., Chen, L., Wang, B.: Tabletop X-ray ghost imaging with ultra-low radiation. Optica 5(4), 374–377 (2018)
CrossRef Google scholar
[8]
Chan, W.L., Charan, K., Takhar, D., Kelly, K.F., Baraniuk, R.G., Mittleman, D.M.: A single-pixel terahertz imaging system based on compressed sensing. Appl. Phys. Lett. 93(12), 121105 (2008)
CrossRef Google scholar
[9]
Watts, C.M., Shrekenhamer, D., Montoya, J., Lipworth, G., Hunt, J., Sleasman, T., Krishna, S., Smith, D.R., Padilla, W.J.: Terahertz compressive imaging with metamaterial spatial light modulators. Nat. Photonics 8(8), 605–609 (2014)
CrossRef Google scholar
[10]
Zuo, Y., Li, B., Zhao, Y., Jiang, Y., Chen, Y.C., Chen, P., Jo, G.B., Liu, J., Du, S.: All-optical neural network with nonlinear activation functions. Optica 6(9), 1132–1137 (2019)
CrossRef Google scholar
[11]
Jiao, S., Feng, J., Gao, Y., Lei, T., Xie, Z., Yuan, X.: Optical machine learning with incoherent light and a single-pixel detector. Opt. Lett. 44(21), 5186–5189 (2019)
CrossRef Google scholar
[12]
Jiao, S., Feng, J., Gao, Y., Lei, T., Yuan, X.: Visual cryptography in single-pixel imaging. Opt. Express 28(5), 7301–7313 (2020)
CrossRef Google scholar
[13]
Zheng, P., Li, J., Li, Z., Ge, M., Zhang, S., Zheng, G., Liu, H.C.: Compressive imaging encryption with secret sharing meta-surfaces. Adv. Opt. Mater. 10(15), 2200257 (2022)
CrossRef Google scholar
[14]
Sun, B., Edgar, M.P., Bowman, R., Vittert, L.E., Welsh, S., Bowman, A., Padgett, M.J.: 3D computational imaging with single-pixel detectors. Science 340(6134), 844–847 (2013)
CrossRef Google scholar
[15]
Sun, M.J., Edgar, M.P., Gibson, G.M., Sun, B., Radwell, N., Lamb, R., Padgett, M.J.: Single-pixel three-dimensional imaging with time-based depth resolution. Nat. Commun. 7(1), 12010 (2016)
CrossRef Google scholar
[16]
Jiang, W., Yin, Y., Jiao, J., Zhao, X., Sun, B.: 2,000,000 fps 2D and 3D imaging of periodic or reproducible scenes with single-pixel detectors. Photon. Res. 10(9), 2157–2164 (2022)
CrossRef Google scholar
[17]
Zha, L., Meng, W., Shi, D., Huang, J., Yuan, K., Yang, W., Chen, Y., Wang, Y.: Complementary moment detection for tracking a fast-moving object using dual single-pixel detectors. Opt. Lett. 47(4), 870–873 (2022)
CrossRef Google scholar
[18]
Sun, S., Liu, W.T., Lin, H.Z., Zhang, E.F., Liu, J.Y., Li, Q., Chen, P.X.: Multi-scale adaptive computational ghost imaging. Sci. Rep. 6(1), 37013 (2016)
CrossRef Google scholar
[19]
Huang, J., Shi, D.: Multispectral computational ghost imaging with multiplexed illumination. J. Opt. 19(7), 075701 (2017)
CrossRef Google scholar
[20]
Xu, Z.H., Chen, W., Penuelas, J., Padgett, M., Sun, M.J.: 1000 fps computational ghost imaging using LED-based structured illumination. Opt. Express 26(3), 2427–2434 (2018)
CrossRef Google scholar
[21]
Balaguer, E.S., Carmona, P.L., Chabert, C., Pla, F., Lancis, J., Tajahuerce, E.: Low-cost single-pixel 3D imaging by using an LED array. Opt. Express 26(12), 15623–15631 (2018)
CrossRef Google scholar
[22]
Kohno, Y., Komatsu, K., Tang, R., Ozeki, Y., Nakano, Y., Tanemura, T.: Ghost imaging using a large-scale silicon photonic phased array chip. Opt. Express 27(3), 3817–3823 (2019)
CrossRef Google scholar
[23]
Fukui, T., Kohno, Y., Tang, R., Nakano, Y., Tanemura, T.: Single-pixel imaging using multimode fiber and silicon photonic phased array. J. Lightwave Technol. 39(3), 839–844 (2021)
CrossRef Google scholar
[24]
Ferri, F., Magatti, D., Lugiato, L.A., Gatti, A.: Differential ghost imaging. Phys. Rev. Lett. 104(25), 253603 (2010)
CrossRef Google scholar
[25]
Sun, B., Welsh, S.S., Edgar, M.P., Shapiro, J.H., Padgett, M.J.: Normalized ghost imaging. Opt. Express 20(15), 16892–16901 (2012)
CrossRef Google scholar
[26]
Duarte, M.F., Davenport, M.A., Takhar, D., Laska, J.N., Sun, T., Kelly, K.F., Baraniuk, R.G.: Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 25(2), 83–91 (2008)
CrossRef Google scholar
[27]
Lyu, M., Wang, W., Wang, H., Wang, H., Li, G., Chen, N., Situ, G.: Deep-learning-based ghost imaging. Sci. Rep. 7(1), 17865 (2017)
CrossRef Google scholar
[28]
Wang, F., Wang, C., Deng, C., Han, S., Situ, G.: Single-pixel imaging using physics enhanced deep learning. Photon. Res. 10(1), 104–110 (2022)
CrossRef Google scholar
[29]
Wang, F., Wang, C., Chen, M., Gong, W., Zhang, Y., Han, S., Situ, G.: Far-field super-resolution ghost imaging with a deep neural network constraint. Light Sci. Appl. 11(1), 1 (2022)
CrossRef Google scholar
[30]
Wu, H., Wang, C., Gong, W.: Ghost imaging via sparse structured illumination source. Opt. Express 26(4), 4183–4191 (2018)
CrossRef Google scholar
[31]
Liu, C., Chen, J., Liu, J., Han, X.: High frame-rate computational ghost imaging system using an optical fiber phased array and a low-pixel APD array. Opt. Express 26(8), 10048–10064 (2018)
CrossRef Google scholar
[32]
Lai, W., Lei, G., Meng, Q., Ma, Y., Cui, W., Shi, D., Liu, H., Wang, Y., Han, K.: Ghost imaging based on Fermat spiral laser array designed for remote sensing. Opt. Express 31(22), 36656–36667 (2023)
CrossRef Google scholar
[33]
Chang, H., Chang, Q., Xi, J., Hou, T., Su, R., Ma, P., Wu, J., Li, C., Jiang, M., Ma, Y., Zhou, P.: First experimental demonstration of coherent beam combining of more than 100 beams. Photon. Res. 8(12), 1943–1948 (2020)
CrossRef Google scholar
[34]
Wu, J., Ma, Y., Ma, P., Su, R., Li, C., Jiang, M., Chang, H., Ren, S., Chang, Q., Wang, T., Ren, B., Zhou, P.: Fiber laser coherent beam combination of 20 kW class high power output. Infrared Laser Eng. 50, 20210621 (2021)

RIGHTS & PERMISSIONS

2024 The Author(s) 2024
AI Summary AI Mindmap
PDF(2348 KB)

Accesses

Citations

Detail

Sections
Recommended

/