Suppression of deep-level traps via semicarbazide hydrochloride additives for high-performance tin-based perovskite solar cells

Wenbo Jia, Yi Jing, Han Zhang, Baoyan Tian, Huabo Huang, Changlei Wang, Ligang Xu

PDF(1242 KB)
PDF(1242 KB)
Front. Optoelectron. ›› 2023, Vol. 16 ›› Issue (4) : 47. DOI: 10.1007/s12200-023-00103-1
RESEARCH ARTICLE

Suppression of deep-level traps via semicarbazide hydrochloride additives for high-performance tin-based perovskite solar cells

Author information +
History +

Abstract

Tin perovskites with exemplary optoelectronic properties offer potential application in lead-free perovskite solar cells. However, Sn vacancies and undercoordinated Sn ions on the tin perovskite surfaces can create deep-level traps, leading to non-radiative recombination and absorption of nucleophilic O2 molecules, impeding further device efficiency and stability. Here, in this study, a new additive of semicarbazide hydrochloride (SEM-HCl) with a N–C=O functional group was introduced into the perovskite precursor to fabricate high-quality films with a low concentration of deep-level trap densities. This, in turn, serves to prevent undesirable interaction between photogenerated carriers and adsorbed oxygen molecules in the device’s operational environment, ultimately reducing the proliferation of superoxide entities. As the result, the SEM-HCl-derived devices show a peak efficiency of 10.9% with improved device stability. These unencapsulated devices maintain almost 100% of their initial efficiencies after working for 100 h under continuous AM1.5 illumination conditions.

Graphical abstract

Keywords

Lead-free perovskite solar cells / Deep-level traps / Power conversion efficiency / Semicarbazide hydrochloride / Stability

Cite this article

Download citation ▾
Wenbo Jia, Yi Jing, Han Zhang, Baoyan Tian, Huabo Huang, Changlei Wang, Ligang Xu. Suppression of deep-level traps via semicarbazide hydrochloride additives for high-performance tin-based perovskite solar cells. Front. Optoelectron., 2023, 16(4): 47 https://doi.org/10.1007/s12200-023-00103-1

References

[1]
Xiao, M., Huang, F., Huang, W., Dkhissi, Y., Zhu, Y., Etheridge, J., Gray-Weale, A., Bach, U., Cheng, Y.B., Spiccia, L.: A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014)
CrossRef Google scholar
[2]
O’regan, B., Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346), 737–740 (1991)
CrossRef Google scholar
[3]
Kim, H.S., Lee, C.R., Im, J.H., Lee, K.B., Moehl, T., Marchioro, A., Moon, S.J., Humphry-Baker, R., Yum, J.H., Moser, J.E., Grätzel, M., Park, N.G.: Lead iodide perovskite sensitized all-solidstate submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2(1), 591 (2012)
CrossRef Google scholar
[4]
Zhang, W., Cai, Y., Liu, H., Xia, Y., Cui, J., Shi, Y., Chen, R., Shi, T., Wang, H.L.: Organic-free and lead-free perovskite solar cells with efficiency over 11%. Adv. Energy Mater. 12(42), 2202491 (2022)
CrossRef Google scholar
[5]
Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)
CrossRef Google scholar
[6]
Abate, A.: Perovskite solar cells go lead free. Joule 1(4), 887 (2017)
CrossRef Google scholar
[7]
Xu, L., Feng, X., Jia, W., Lv, W., Mei, A., Zhou, Y., Zhang, Q., Chen, R., Huang, W.: Recent advances and challenges of inverted lead-free tin-based perovskite solar cells. Energy Environ. Sci. 14(8), 4292–4317 (2021)
CrossRef Google scholar
[8]
Saidaminov, M.I., Spanopoulos, I., Abed, J., Ke, W., Wicks, J., Kanatzidis, M.G., Sargent, E.H.: Conventional solvent oxidizes Sn(II) in perovskite inks. ACS Energy Lett. 5(4), 1153–1155 (2020)
CrossRef Google scholar
[9]
Xu, P., Chen, S., Xiang, H.J., Gong, X.G., Wei, S.H.: Influence of defects and synthesis conditions on the photovoltaic performance of perovskite semiconductor CsSnI3. Chem. Mater. 26(20), 6068–6072 (2014)
CrossRef Google scholar
[10]
Lv, W., Hu, Z., Qiu, W., Yan, D., Li, M., Mei, A., Xu, L., Chen, R.: Constructing soft perovskite-substrate interfaces for dynamic modulation of perovskite film in inverted solar cells with over 6200 hours photostability. Adv. Sci. (Weinh.) 9(28), e2202028 (2022)
CrossRef Google scholar
[11]
Xu, L., Wu, D., Lv, W., Xiang, Y., Liu, Y., Tao, Y., Yin, J., Qian, M., Li, P., Zhang, L., Chen, S., Mohammed, O.F., Bakr, O.M., Duan, Z., Chen, R., Huang, W.: Resonance-mediated dynamic modulation of perovskite crystallization for efficient and stable solar cells. Adv. Mater. 34(6), e2107111 (2022)
CrossRef Google scholar
[12]
Yang, X., Li, Q., Zheng, Y., Luo, D., Zhang, Y., Tu, Y., Zhao, L., Wang, Y., Xu, F., Gong, Q., Zhu, R.: Perovskite heterobilayer for efficient charge-transport-layer-free solar cells. Joule 6(6), 1277–1289 (2022)
CrossRef Google scholar
[13]
Zhang, J., Huang, C., Sun, Y., Yu, H.: Amino-functionalized niobium-carbide MXene serving as electron transport layer and perovskite additive for the preparation of high-performance and stable methylammonium-free perovskite solar cells. Adv. Funct. Mater. 32(24), 2113367 (2022)
CrossRef Google scholar
[14]
Xu, L., Zhang, C., Feng, X., Lv, W., Huang, Z., Lv, W., Zheng, C., Xing, G., Huang, W., Chen, R.: Vapor incubation of FASnI3 films for efficient and stable lead-free inverted perovskite solar cells. J. Mater. Chem. A Mater. Energy Sustain. 9(31), 16943–16951 (2021)
CrossRef Google scholar
[15]
Zhou, Y., Yan, D., Zhang, H., Jing, Y., Chao, L., Li, M., Li, M., Chen, Y., Chen, R., Xu, L.: Ionic liquid-mediated intermediate phase adduct constructing for highly stable lead-free perovskite solar cells. ACS Mater. Lett. 5(8), 2096–2103 (2023)
CrossRef Google scholar
[16]
Zhu, Z., Jiang, X., Yu, D., Yu, N., Ning, Z., Mi, Q.: Smooth and compact FASnI3 films for lead-free perovskite solar cells with over 14% efficiency. ACS Energy Lett. 7(6), 2079–2083 (2022)
CrossRef Google scholar
[17]
Song, D., Li, H., Xu, Y., Yu, Q.: Amplifying hole extraction characteristics of PEDOT:PSS via post-treatment with aromatic diammonium acetates for tin perovskite solar cells. ACS Energy Lett. 8(8), 3280–3287 (2023)
CrossRef Google scholar
[18]
Huang, L., Cui, H., Zhang, W., Pu, D., Zeng, G., Liu, Y., Zhou, S., Wang, C., Zhou, J., Wang, C., Guan, H., Shen, W., Li, G., Wang, T., Zheng, W., Fang, G., Ke, W.: Efficient narrow-band-gap mixed tin-lead perovskite solar cells via natural tin oxide doping. Adv. Mater. 35(32), e2301125 (2023)
CrossRef Google scholar
[19]
Reo, Y., Choi, T., Go, J.Y., Jeon, S., Lim, B., Zhu, H., Liu, A., Noh, Y.Y.: Precursor solution aging: a universal strategy modulating crystallization of two-dimensional tin halide perovskite films. ACS Energy Lett. 8(7), 3088–3094 (2023)
CrossRef Google scholar
[20]
Pascual, J., Nasti, G., Aldamasy, M.H., Smith, J.A., Flatken, M., Phung, N., Di Girolamo, D., Turren-Cruz, S.H., Li, M., Dallmann, A., Avolio, R., Abate, A.: Origin of Sn(II) oxidation in tin halide perovskites. Mater. Adv. 1(5), 1066–1070 (2020)
CrossRef Google scholar
[21]
Xiao, Z., Dong, Q., Bi, C., Shao, Y., Yuan, Y., Huang, J.: Solvent annealing of perovskite-induced crystal growth for photovoltaicdevice efficiency enhancement. Adv. Mater. 26(37), 6503–6509 (2014)
CrossRef Google scholar
[22]
Zheng, C., Qiu, P., Zhong, S., Luo, X., Wu, S., Wang, Q., Gao, J., Lu, X., Gao, X., Shui, L., Wu, S., Liu, J.: Dual effects of slow recrystallization and defects passivation achieve efficient tin-based perovskite solar cells with good stability up to one year. Adv. Funct. Mater. 33(12), 2212106 (2023)
CrossRef Google scholar
[23]
Li, Y., Chen, J., Cai, P., Wen, Z.: An electrochemically neutralized energy-assisted low-cost acid-alkaline electrolyzer for energy-saving electrolysis hydrogen generation. J. Mater. Chem. A Mater. Energy Sustain. 6(12), 4948–4954 (2018)
CrossRef Google scholar
[24]
Zhuang, X., Zhou, D., Liu, S., Sun, R., Shi, Z., Liu, L., Wang, T., Liu, B., Liu, D., Song, H.: Learning from plants: lycopene additive passivation toward efficient and “fresh” perovskite solar cells with oxygen and ultraviolet resistance. Adv. Energy Mater. 12(25), 2200614 (2022)
CrossRef Google scholar
[25]
Tai, Q., Guo, X., Tang, G., You, P., Ng, T.W., Shen, D., Cao, J., Liu, C.K., Wang, N., Zhu, Y., Lee, C.S., Yan, F.: Antioxidant grain passivation for air-stable tin-based perovskite solar cells. Angew. Chem. Int. Ed. Engl. 58(3), 806–810 (2019)
CrossRef Google scholar
[26]
Li, W., Li, J., Li, J., Fan, J., Mai, Y., Wang, L.: Addictive-assisted construction of all-inorganic CsSnIBr 2 mesoscopic perovskite solar cells with superior thermal stability up to 473 K. J. Mater. Chem. A Mater. Energy Sustain. 4(43), 17104–17110 (2016)
CrossRef Google scholar
[27]
Kayesh, M.E., Chowdhury, T.H., Matsuishi, K., Kaneko, R., Kazaoui, S., Lee, J.J., Noda, T., Islam, A.: Enhanced photovoltaic performance of fasni3-based perovskite solar cells with hydrazinium chloride coadditive. ACS Energy Lett. 3(7), 1584–1589 (2018)
CrossRef Google scholar
[28]
Wang, T., Tai, Q., Guo, X., Cao, J., Liu, C.K., Wang, N., Shen, D., Zhu, Y., Lee, C.S., Yan, F.: Highly air-stable tin-based perovskite solar cells through grain-surface protection by gallic acid. ACS Energy Lett. 5(6), 1741–1749 (2020)
CrossRef Google scholar
[29]
Rameez, M., Lin, E.Y.R., Raghunath, P., Narra, S., Song, D., Lin, M.C., Hung, C.H., Diau, E.W.G.: Development of hybrid pseudohalide tin perovskites for highly stable carbon-electrode solar cells. ACS Appl. Mater. Interfaces 12(19), 21739–21747 (2020)
CrossRef Google scholar
[30]
Marshall, K.P., Walker, M., Walton, R.I., Hatton, R.A.: Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics. Nat. Energy 1(12), 16178 (2016)
CrossRef Google scholar
[31]
Gao, W., Li, P., Chen, J., Ran, C., Wu, Z.: Interface engineering in tin perovskite solar cells. Adv. Mater. Interfaces 6(24), 1901322 (2019)
CrossRef Google scholar
[32]
Milot, R.L., Klug, M.T., Davies, C.L., Wang, Z., Kraus, H., Snaith, H.J., Johnston, M.B., Herz, L.M.: The effects of doping density and temperature on the optoelectronic properties of formamidinium tin triiodide thin films. Adv. Mater. 30(44), e1804506 (2018)
CrossRef Google scholar
[33]
Li, Z., Ji, J., Zhang, C., Hou, Q., Jin, P.: First-principles study on the oxygen–light-induced iodide vacancy formation in FASnI3 perovskite. J. Phys. Chem. C 124(26), 14147–14157 (2020)
CrossRef Google scholar
[34]
Zhang, X., Wang, S., Zhu, W., Cao, Z., Wang, A., Hao, F.: The voltage loss in tin halide perovskite solar cells: origins and perspectives. Adv. Funct. Mater. 32(8), 2108832 (2022)
CrossRef Google scholar
[35]
Na Quan, L., Ma, D., Zhao, Y., Voznyy, O., Yuan, H., Bladt, E., Pan, J., García de Arquer, F.P., Sabatini, R., Piontkowski, Z., Emwas, A.H., Todorović, P., Quintero-Bermudez, R., Walters, G., Fan, J.Z., Liu, M., Tan, H., Saidaminov, M.I., Gao, L., Li, Y., Anjum, D.H., Wei, N., Tang, J., McCamant, D.W., Roeffaers, M.B.J., Bals, S., Hofkens, J., Bakr, O.M., Lu, Z.H., Sargent, E.H.: Edge stabilization in reduced-dimensional perovskites. Nat. Commun. 11(1), 170 (2020)
CrossRef Google scholar
[36]
Aristidou, N., Eames, C., Sanchez-Molina, I., Bu, X., Kosco, J., Islam, M.S., Haque, S.A.: Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat. Commun. 8(1), 15218 (2017)
CrossRef Google scholar
[37]
Li, B., Di, H., Chang, B., Yin, R., Fu, L., Zhang, Y.N., Yin, L.: Efficient passivation strategy on Sn related defects for high performance all-inorganic CsSnI3 perovskite solar cells. Adv. Funct. Mater. 31(11), 2007447 (2021)
CrossRef Google scholar
[38]
Xia, J., Luo, J., Yang, H., Sun, C., Wan, Z., Malik, H.A., Zhang, H., Shi, Y., Jia, C.: Ionic selective contact controls the charge accumulation for efficient and intrinsic stable planar homo-junction perovskite solar cells. Nano Energy 66, 104098 (2019)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 The Author(s) 2023
AI Summary AI Mindmap
PDF(1242 KB)

Accesses

Citations

Detail

Sections
Recommended

/