Suppression of deep-level traps via semicarbazide hydrochloride additives for high-performance tin-based perovskite solar cells
Wenbo Jia, Yi Jing, Han Zhang, Baoyan Tian, Huabo Huang, Changlei Wang, Ligang Xu
Suppression of deep-level traps via semicarbazide hydrochloride additives for high-performance tin-based perovskite solar cells
Tin perovskites with exemplary optoelectronic properties offer potential application in lead-free perovskite solar cells. However, Sn vacancies and undercoordinated Sn ions on the tin perovskite surfaces can create deep-level traps, leading to non-radiative recombination and absorption of nucleophilic O2 molecules, impeding further device efficiency and stability. Here, in this study, a new additive of semicarbazide hydrochloride (SEM-HCl) with a N–C=O functional group was introduced into the perovskite precursor to fabricate high-quality films with a low concentration of deep-level trap densities. This, in turn, serves to prevent undesirable interaction between photogenerated carriers and adsorbed oxygen molecules in the device’s operational environment, ultimately reducing the proliferation of superoxide entities. As the result, the SEM-HCl-derived devices show a peak efficiency of 10.9% with improved device stability. These unencapsulated devices maintain almost 100% of their initial efficiencies after working for 100 h under continuous AM1.5 illumination conditions.
Lead-free perovskite solar cells / Deep-level traps / Power conversion efficiency / Semicarbazide hydrochloride / Stability
[1] |
Xiao, M., Huang, F., Huang, W., Dkhissi, Y., Zhu, Y., Etheridge, J., Gray-Weale, A., Bach, U., Cheng, Y.B., Spiccia, L.: A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem. Int. Ed. Engl. 53(37), 9898–9903 (2014)
CrossRef
Google scholar
|
[2] |
O’regan, B., Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346), 737–740 (1991)
CrossRef
Google scholar
|
[3] |
Kim, H.S., Lee, C.R., Im, J.H., Lee, K.B., Moehl, T., Marchioro, A., Moon, S.J., Humphry-Baker, R., Yum, J.H., Moser, J.E., Grätzel, M., Park, N.G.: Lead iodide perovskite sensitized all-solidstate submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2(1), 591 (2012)
CrossRef
Google scholar
|
[4] |
Zhang, W., Cai, Y., Liu, H., Xia, Y., Cui, J., Shi, Y., Chen, R., Shi, T., Wang, H.L.: Organic-free and lead-free perovskite solar cells with efficiency over 11%. Adv. Energy Mater. 12(42), 2202491 (2022)
CrossRef
Google scholar
|
[5] |
Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)
CrossRef
Google scholar
|
[6] |
Abate, A.: Perovskite solar cells go lead free. Joule 1(4), 887 (2017)
CrossRef
Google scholar
|
[7] |
Xu, L., Feng, X., Jia, W., Lv, W., Mei, A., Zhou, Y., Zhang, Q., Chen, R., Huang, W.: Recent advances and challenges of inverted lead-free tin-based perovskite solar cells. Energy Environ. Sci. 14(8), 4292–4317 (2021)
CrossRef
Google scholar
|
[8] |
Saidaminov, M.I., Spanopoulos, I., Abed, J., Ke, W., Wicks, J., Kanatzidis, M.G., Sargent, E.H.: Conventional solvent oxidizes Sn(II) in perovskite inks. ACS Energy Lett. 5(4), 1153–1155 (2020)
CrossRef
Google scholar
|
[9] |
Xu, P., Chen, S., Xiang, H.J., Gong, X.G., Wei, S.H.: Influence of defects and synthesis conditions on the photovoltaic performance of perovskite semiconductor CsSnI3. Chem. Mater. 26(20), 6068–6072 (2014)
CrossRef
Google scholar
|
[10] |
Lv, W., Hu, Z., Qiu, W., Yan, D., Li, M., Mei, A., Xu, L., Chen, R.: Constructing soft perovskite-substrate interfaces for dynamic modulation of perovskite film in inverted solar cells with over 6200 hours photostability. Adv. Sci. (Weinh.) 9(28), e2202028 (2022)
CrossRef
Google scholar
|
[11] |
Xu, L., Wu, D., Lv, W., Xiang, Y., Liu, Y., Tao, Y., Yin, J., Qian, M., Li, P., Zhang, L., Chen, S., Mohammed, O.F., Bakr, O.M., Duan, Z., Chen, R., Huang, W.: Resonance-mediated dynamic modulation of perovskite crystallization for efficient and stable solar cells. Adv. Mater. 34(6), e2107111 (2022)
CrossRef
Google scholar
|
[12] |
Yang, X., Li, Q., Zheng, Y., Luo, D., Zhang, Y., Tu, Y., Zhao, L., Wang, Y., Xu, F., Gong, Q., Zhu, R.: Perovskite heterobilayer for efficient charge-transport-layer-free solar cells. Joule 6(6), 1277–1289 (2022)
CrossRef
Google scholar
|
[13] |
Zhang, J., Huang, C., Sun, Y., Yu, H.: Amino-functionalized niobium-carbide MXene serving as electron transport layer and perovskite additive for the preparation of high-performance and stable methylammonium-free perovskite solar cells. Adv. Funct. Mater. 32(24), 2113367 (2022)
CrossRef
Google scholar
|
[14] |
Xu, L., Zhang, C., Feng, X., Lv, W., Huang, Z., Lv, W., Zheng, C., Xing, G., Huang, W., Chen, R.: Vapor incubation of FASnI3 films for efficient and stable lead-free inverted perovskite solar cells. J. Mater. Chem. A Mater. Energy Sustain. 9(31), 16943–16951 (2021)
CrossRef
Google scholar
|
[15] |
Zhou, Y., Yan, D., Zhang, H., Jing, Y., Chao, L., Li, M., Li, M., Chen, Y., Chen, R., Xu, L.: Ionic liquid-mediated intermediate phase adduct constructing for highly stable lead-free perovskite solar cells. ACS Mater. Lett. 5(8), 2096–2103 (2023)
CrossRef
Google scholar
|
[16] |
Zhu, Z., Jiang, X., Yu, D., Yu, N., Ning, Z., Mi, Q.: Smooth and compact FASnI3 films for lead-free perovskite solar cells with over 14% efficiency. ACS Energy Lett. 7(6), 2079–2083 (2022)
CrossRef
Google scholar
|
[17] |
Song, D., Li, H., Xu, Y., Yu, Q.: Amplifying hole extraction characteristics of PEDOT:PSS via post-treatment with aromatic diammonium acetates for tin perovskite solar cells. ACS Energy Lett. 8(8), 3280–3287 (2023)
CrossRef
Google scholar
|
[18] |
Huang, L., Cui, H., Zhang, W., Pu, D., Zeng, G., Liu, Y., Zhou, S., Wang, C., Zhou, J., Wang, C., Guan, H., Shen, W., Li, G., Wang, T., Zheng, W., Fang, G., Ke, W.: Efficient narrow-band-gap mixed tin-lead perovskite solar cells via natural tin oxide doping. Adv. Mater. 35(32), e2301125 (2023)
CrossRef
Google scholar
|
[19] |
Reo, Y., Choi, T., Go, J.Y., Jeon, S., Lim, B., Zhu, H., Liu, A., Noh, Y.Y.: Precursor solution aging: a universal strategy modulating crystallization of two-dimensional tin halide perovskite films. ACS Energy Lett. 8(7), 3088–3094 (2023)
CrossRef
Google scholar
|
[20] |
Pascual, J., Nasti, G., Aldamasy, M.H., Smith, J.A., Flatken, M., Phung, N., Di Girolamo, D., Turren-Cruz, S.H., Li, M., Dallmann, A., Avolio, R., Abate, A.: Origin of Sn(II) oxidation in tin halide perovskites. Mater. Adv. 1(5), 1066–1070 (2020)
CrossRef
Google scholar
|
[21] |
Xiao, Z., Dong, Q., Bi, C., Shao, Y., Yuan, Y., Huang, J.: Solvent annealing of perovskite-induced crystal growth for photovoltaicdevice efficiency enhancement. Adv. Mater. 26(37), 6503–6509 (2014)
CrossRef
Google scholar
|
[22] |
Zheng, C., Qiu, P., Zhong, S., Luo, X., Wu, S., Wang, Q., Gao, J., Lu, X., Gao, X., Shui, L., Wu, S., Liu, J.: Dual effects of slow recrystallization and defects passivation achieve efficient tin-based perovskite solar cells with good stability up to one year. Adv. Funct. Mater. 33(12), 2212106 (2023)
CrossRef
Google scholar
|
[23] |
Li, Y., Chen, J., Cai, P., Wen, Z.: An electrochemically neutralized energy-assisted low-cost acid-alkaline electrolyzer for energy-saving electrolysis hydrogen generation. J. Mater. Chem. A Mater. Energy Sustain. 6(12), 4948–4954 (2018)
CrossRef
Google scholar
|
[24] |
Zhuang, X., Zhou, D., Liu, S., Sun, R., Shi, Z., Liu, L., Wang, T., Liu, B., Liu, D., Song, H.: Learning from plants: lycopene additive passivation toward efficient and “fresh” perovskite solar cells with oxygen and ultraviolet resistance. Adv. Energy Mater. 12(25), 2200614 (2022)
CrossRef
Google scholar
|
[25] |
Tai, Q., Guo, X., Tang, G., You, P., Ng, T.W., Shen, D., Cao, J., Liu, C.K., Wang, N., Zhu, Y., Lee, C.S., Yan, F.: Antioxidant grain passivation for air-stable tin-based perovskite solar cells. Angew. Chem. Int. Ed. Engl. 58(3), 806–810 (2019)
CrossRef
Google scholar
|
[26] |
Li, W., Li, J., Li, J., Fan, J., Mai, Y., Wang, L.: Addictive-assisted construction of all-inorganic CsSnIBr 2 mesoscopic perovskite solar cells with superior thermal stability up to 473 K. J. Mater. Chem. A Mater. Energy Sustain. 4(43), 17104–17110 (2016)
CrossRef
Google scholar
|
[27] |
Kayesh, M.E., Chowdhury, T.H., Matsuishi, K., Kaneko, R., Kazaoui, S., Lee, J.J., Noda, T., Islam, A.: Enhanced photovoltaic performance of fasni3-based perovskite solar cells with hydrazinium chloride coadditive. ACS Energy Lett. 3(7), 1584–1589 (2018)
CrossRef
Google scholar
|
[28] |
Wang, T., Tai, Q., Guo, X., Cao, J., Liu, C.K., Wang, N., Shen, D., Zhu, Y., Lee, C.S., Yan, F.: Highly air-stable tin-based perovskite solar cells through grain-surface protection by gallic acid. ACS Energy Lett. 5(6), 1741–1749 (2020)
CrossRef
Google scholar
|
[29] |
Rameez, M., Lin, E.Y.R., Raghunath, P., Narra, S., Song, D., Lin, M.C., Hung, C.H., Diau, E.W.G.: Development of hybrid pseudohalide tin perovskites for highly stable carbon-electrode solar cells. ACS Appl. Mater. Interfaces 12(19), 21739–21747 (2020)
CrossRef
Google scholar
|
[30] |
Marshall, K.P., Walker, M., Walton, R.I., Hatton, R.A.: Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics. Nat. Energy 1(12), 16178 (2016)
CrossRef
Google scholar
|
[31] |
Gao, W., Li, P., Chen, J., Ran, C., Wu, Z.: Interface engineering in tin perovskite solar cells. Adv. Mater. Interfaces 6(24), 1901322 (2019)
CrossRef
Google scholar
|
[32] |
Milot, R.L., Klug, M.T., Davies, C.L., Wang, Z., Kraus, H., Snaith, H.J., Johnston, M.B., Herz, L.M.: The effects of doping density and temperature on the optoelectronic properties of formamidinium tin triiodide thin films. Adv. Mater. 30(44), e1804506 (2018)
CrossRef
Google scholar
|
[33] |
Li, Z., Ji, J., Zhang, C., Hou, Q., Jin, P.: First-principles study on the oxygen–light-induced iodide vacancy formation in FASnI3 perovskite. J. Phys. Chem. C 124(26), 14147–14157 (2020)
CrossRef
Google scholar
|
[34] |
Zhang, X., Wang, S., Zhu, W., Cao, Z., Wang, A., Hao, F.: The voltage loss in tin halide perovskite solar cells: origins and perspectives. Adv. Funct. Mater. 32(8), 2108832 (2022)
CrossRef
Google scholar
|
[35] |
Na Quan, L., Ma, D., Zhao, Y., Voznyy, O., Yuan, H., Bladt, E., Pan, J., García de Arquer, F.P., Sabatini, R., Piontkowski, Z., Emwas, A.H., Todorović, P., Quintero-Bermudez, R., Walters, G., Fan, J.Z., Liu, M., Tan, H., Saidaminov, M.I., Gao, L., Li, Y., Anjum, D.H., Wei, N., Tang, J., McCamant, D.W., Roeffaers, M.B.J., Bals, S., Hofkens, J., Bakr, O.M., Lu, Z.H., Sargent, E.H.: Edge stabilization in reduced-dimensional perovskites. Nat. Commun. 11(1), 170 (2020)
CrossRef
Google scholar
|
[36] |
Aristidou, N., Eames, C., Sanchez-Molina, I., Bu, X., Kosco, J., Islam, M.S., Haque, S.A.: Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat. Commun. 8(1), 15218 (2017)
CrossRef
Google scholar
|
[37] |
Li, B., Di, H., Chang, B., Yin, R., Fu, L., Zhang, Y.N., Yin, L.: Efficient passivation strategy on Sn related defects for high performance all-inorganic CsSnI3 perovskite solar cells. Adv. Funct. Mater. 31(11), 2007447 (2021)
CrossRef
Google scholar
|
[38] |
Xia, J., Luo, J., Yang, H., Sun, C., Wan, Z., Malik, H.A., Zhang, H., Shi, Y., Jia, C.: Ionic selective contact controls the charge accumulation for efficient and intrinsic stable planar homo-junction perovskite solar cells. Nano Energy 66, 104098 (2019)
CrossRef
Google scholar
|
/
〈 | 〉 |