An all-silicon design of a high-efficiency broadband transmissive terahertz polarization convertor
Xiaohua Xing, Die Zou, Xin Ding, Jianquan Yao, Liang Wu
An all-silicon design of a high-efficiency broadband transmissive terahertz polarization convertor
Polarization, a fundamental behavior of electromagnetic waves, holds immense potential across diverse domains such as environmental monitoring, biomedicine, and ocean exploration. However, achieving efficient modulation of terahertz waves with wide operational bandwidth poses significant challenges. Here, we introduce an all-silicon polarization converter designed specifically to operate in the terahertz range of the electromagnetic spectrum. Simulation results demonstrate that the average conversion efficiency of cross-linear waves exceeds 80% across a wide frequency range spanning from 1.00 to 2.32 THz, with the highest conversion efficiency peaking at an impressive 99.97%. Additionally, our proposed structure facilitates linear-to-circular polarization conversion with an ellipticity of 1 at 0.85 THz. Furthermore, by rotating the cross-shaped microstructure, active control over arbitrary polarization states can be achieved. To summarize, the proposed structure offers remarkable flexibility and ease of integration, providing a reliable and practical solution for achieving broadband and efficient polarization conversion of terahertz waves.
Broadband / High efficiency / Polarization conversion / All-silicon
[1] |
Nie, X.Y., Zhang, Y.L., Xiang, F.D., Lu, J.G., Huang, X., Wang, K.J., Liu, J.S., Yang, Z.G.: Cross section measurements of scale-model tactical targets by using 0.1 THz compact radar system. Chin. Opt. Lett. 15, 112201 (2017)
CrossRef
Google scholar
|
[2] |
Xiao, Z.Y., Yang, Q.J., Huang, J.G., Huang, Z.M., Zhou, W., Gao, Y.Q., Shu, R., He, Z.P.: Terahertz communication windows and their point-to-point transmission verification. Appl. Opt. 57, 7673–7680 (2018)
CrossRef
Google scholar
|
[3] |
Seeds, A.J., Shams, H., Fice, M.J., Renaud, C.C.: Terahertz photonics for wireless communications. J. Lightwave Technol. 33, 579–587 (2015)
CrossRef
Google scholar
|
[4] |
Funaki, C., Toyouchi, T., Hoshina, H., Ozaki, Y., Sato, H.: Terahertz imaging of the distribution of crystallinity and crystalline orientation in a poly(ϵ-caprolactone) film. Appl. Spectrosc.Spectrosc. 71, 1537–1542 (2017)
CrossRef
Google scholar
|
[5] |
Guerboukha, H., Nallappan, K., Skorobogatiy, M.: Toward real-time terahertz imaging. Adv. Opt. Photon. 10, 843–938 (2018)
CrossRef
Google scholar
|
[6] |
Caucheteur, C., Guo, T., Albert, J.: Polarization-assisted fiber Bragg grating sensors: tutorial and review. J. Lightwave Technol. 35, 3311–3322 (2017)
CrossRef
Google scholar
|
[7] |
Haigh, J.A., Kinebas, Y., Ramsay, A.J.: Inverse conoscopy: a method to measure polarization using patterns generated by a single birefringent crystal. Appl. Opt. 53, 184–188 (2014)
CrossRef
Google scholar
|
[8] |
Przhiyalkovskiy, Y.V., Starostin, N.I., Morshnev, S.K., Sazonov, A.I.: Polarization dynamics of light propagating in bent spun bire-fringent fiber. J. Lightwave Technol. 38, 6879–6885 (2020)
CrossRef
Google scholar
|
[9] |
Masson, J.B., Gallot, G.: Terahertz achromatic quarter-wave plate. Opt. Lett. 31, 265–267 (2006)
CrossRef
Google scholar
|
[10] |
Kaveev, A.K., Kropotov, G.I., Tsygankova, E.V., Tzibizov, I.A., Ganichev, S.D., Danilov, S.N., Olbrich, P., Zoth, C., Kaveeva, E.G., Zhdanov, A.I., Ivanov, A.A., Deyanov, R.Z., Redlich, B.: Terahertz polarization conversion with quartz waveplate sets. Appl. Opt. 52, B60–B69 (2013)
CrossRef
Google scholar
|
[11] |
Zhilin, A.A., Tagantsev, D.K., Alemaskin, M.Y., Shepilov, M.P., Zapalova, S.S., Sazonov, M.E.: Metamaterials with a network structure. J. Opt. Technol. 79, 241–245 (2012)
CrossRef
Google scholar
|
[12] |
Wang, J., Wang, S., Singh, R.J., Zhang, W.L.: Metamaterial inspired terahertz devices: from ultra-sensitive sensing to near field manipulation. Chin. Opt. Lett. 11, 011602 (2013)
CrossRef
Google scholar
|
[13] |
Cheng, Y.Z., Zhu, X.Z., Li, J., Chen, F., Luo, H., Wu, L.: Terahertz broadband tunable reflective cross-polarization convertor based on complementary cross-shaped graphene metasurface. Phys E Low Dimens. Syst. 134, 114993 (2021)
CrossRef
Google scholar
|
[14] |
Zhu, X. Z., Cheng, Y. Z., Fan, J. P., Chen, F., Luo, H., Wu, L.: Switchable efficiency terahertz anomalous refraction and focusing based on graphene metasurface. Diamond Relat Mater. 121,108743 (2022)
CrossRef
Google scholar
|
[15] |
Cheng, Y., Yu, J., Li, X.: Tri-band high-efficiency circular polarization convertor based on double-split-ring resonator structures. Appl. Phys. B 128, 1 (2022)
CrossRef
Google scholar
|
[16] |
Zhao, J., Li, N., Cheng, Y.: All-dielectric InSb metasurface for broadband and high-efficient thermal tunable terahertz reflective linear-polarization conversion. Opt. Commun.Commun. 536, 129372 (2023)
CrossRef
Google scholar
|
[17] |
Li, N., Zhao, J.C., Tang, P.Y., Cheng, Y.Z.: Design of all-metal 3D anisotropic metamaterial for ultrabroadband terahertz reflective linear polarization conversion. Phys Status Solidi B Basic Res. 260, 2300104 (2023)
CrossRef
Google scholar
|
[18] |
Sun, H., Zhang, Y.X., Wang, K.L., Zhao, Y.C., Kou, W., Liang, S.X., Han, J.G., Yang, Z.Q.: Linear polarization conversion of transmitted terahertz wave with double-layer meta-grating surfaces. Chin. Opt. Lett. 16, 081601 (2018)
CrossRef
Google scholar
|
[19] |
Cheng, Z.Z., Cheng, Y.Z.: A multi-functional polarization convertor based on chiral metamaterial for terahertz waves. Opt. Commun. Commun. 435, 178–182 (2019)
CrossRef
Google scholar
|
[20] |
Zi, J.C., Ji, Y.F., Xi, F., Xu, Q., Liu, H.C., Zhang, X.X., Han, J.G., Zhang, W.L.: Dual-functional terahertz waveplate based on all-dielectric metamaterial. Phys. Rev. Appl. 13, 034042 (2020)
CrossRef
Google scholar
|
[21] |
Kumar, A., Ghatak, A.: Polarization of light with applications in optical fibers. SPIE Press, Bellingham, WA, USA (2011)
CrossRef
Google scholar
|
[22] |
Zi, J., Xu, Q., Wang, Q., Tian, C., Li, Y., Zhang, X., Han, J., Zhang, W.: Terahertz polarization converter based on all-dielectric high birefringence metamaterial with elliptical air holes. Opt. Commun.Commun. 416, 130–136 (2018)
CrossRef
Google scholar
|
[23] |
Maxwell, J.C.: A treatise on electricity and magnetism. Clarendon Press, UK (1873)
|
[24] |
Born, M., Wolf, E.: Principles of optics. Cambridge University Press, London (1999)
|
[25] |
Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of ϵ and μ. Soviet Physics Uspekhi 10, 509 (1968)
CrossRef
Google scholar
|
[26] |
Fu, X., Cui, T.J.: Recent progress on metamaterials: from effective medium model to real-time information processing system. Prog. Quantum Electron. 67, 100223 (2019)
CrossRef
Google scholar
|
[27] |
Li, J., Zheng, C.L., Li, J.T., Wang, G.C., Liu, J.Y., Yue, Z., Hao, X.R., Yang, Y., Li, F.Y., Tang, T.T., Zhang, Y.T., Zhang, Y., Yao, J.Q.: Terahertz wavefront shaping with multi-channel polarization conversion based on all-dielectric metasurface. Photonics Res. 9, 1939–1947 (2021)
CrossRef
Google scholar
|
[28] |
Yan, W., Li, S., Hui, W., Feng, L., Tan, B., Tan, Y., Su, R., Wu, J., Zhang, C., Jin, B., Chen, J., Wu, P.: Broadband and efficient asymmetric wavefront manipulation via terahertz polarization-selective metasurface. Appl. Phys. Lett. 121, 151701 (2022)
CrossRef
Google scholar
|
[29] |
Lian, M., Ying, S., Liu, K., Zhang, S., Chen, X., Ren, H., Xu, Y., Chen, J., Tian, Z., Cao, T.: Nonvolatile switchable broadband polarization conversion with wearable terahertz chalcogenide metamaterials. Adv. Opt. Mater. 11, 2202439 (2023)
CrossRef
Google scholar
|
[30] |
Peng, Z., Zheng, Z., Yu, Z., Lan, H., Zhang, M., Wang, S., Li, L., Liang, H., Su, H.: Broadband absorption and polarization conversion switchable terahertz metamaterial device based on vanadium dioxide. Opt. Laser Technol. 157, 108723 (2023)
CrossRef
Google scholar
|
[31] |
Tao, X., Qi, L., Yang, J., Uqaili, J., Lan, F., Yang, Z.: Bifunctional terahertz metasurface for transmissive broadband linear-to-circular and linear polarization conversion. IEEE T THz Sci. Techn. 13, 254–261 (2023)
CrossRef
Google scholar
|
[32] |
Gutiérrez-Vega, J.C.: Pancharatnam-Berry phase of optical systems. Opt. Lett. 36, 1143–1145 (2011)
CrossRef
Google scholar
|
[33] |
Tian, Y., Jing, X.F., Yu, H., Gan, H.Y., Li, C.X., Hong, Z.: Manipulation of the arbitrary scattering angle based on all-dielectric transmissive Pancharatnam Berry phase coding metasurfaces in the visible range. Opt. Express 28, 32107–32123 (2020)
CrossRef
Google scholar
|
[34] |
Zi, J., Xu, Q., Wang, Q., Tian, C., Li, Y., Zhang, X., Han, J., Zhang, W.: Antireflection-assisted all-dielectric terahertz meta-material polarization converter. Appl. Phys. Lett. 113, 101104 (2018)
CrossRef
Google scholar
|
[35] |
Sakurai, H., Nemoto, N., Konishi, K., Takaku, R., Sakurai, Y., Katayama, N., Matsumura, T., Yumoto, J., Kuwata-Gonokami, M.: Terahertz broadband anti-reflection moth-eye structures fabricated by femtosecond laser processing. OSA Continuum. 2, 2764–2772 (2019)
CrossRef
Google scholar
|
[36] |
Tan, G.J., Lee, J., Lan, Y.H., Wei, M.K., Peng, L.H., Cheng, I.C., Wu, S.T.: Broadband antireflection film with moth-eye-like structure for flexible display applications. Optica 4, 678–683 (2017)
CrossRef
Google scholar
|
/
〈 | 〉 |