An all-silicon design of a high-efficiency broadband transmissive terahertz polarization convertor

Xiaohua Xing, Die Zou, Xin Ding, Jianquan Yao, Liang Wu

PDF(1604 KB)
PDF(1604 KB)
Front. Optoelectron. ›› 2023, Vol. 16 ›› Issue (4) : 40. DOI: 10.1007/s12200-023-00098-9
RESEARCH ARTICLE
RESEARCH ARTICLE

An all-silicon design of a high-efficiency broadband transmissive terahertz polarization convertor

Author information +
History +

Abstract

Polarization, a fundamental behavior of electromagnetic waves, holds immense potential across diverse domains such as environmental monitoring, biomedicine, and ocean exploration. However, achieving efficient modulation of terahertz waves with wide operational bandwidth poses significant challenges. Here, we introduce an all-silicon polarization converter designed specifically to operate in the terahertz range of the electromagnetic spectrum. Simulation results demonstrate that the average conversion efficiency of cross-linear waves exceeds 80% across a wide frequency range spanning from 1.00 to 2.32 THz, with the highest conversion efficiency peaking at an impressive 99.97%. Additionally, our proposed structure facilitates linear-to-circular polarization conversion with an ellipticity of 1 at 0.85 THz. Furthermore, by rotating the cross-shaped microstructure, active control over arbitrary polarization states can be achieved. To summarize, the proposed structure offers remarkable flexibility and ease of integration, providing a reliable and practical solution for achieving broadband and efficient polarization conversion of terahertz waves.

Graphical abstract

Keywords

Broadband / High efficiency / Polarization conversion / All-silicon

Cite this article

Download citation ▾
Xiaohua Xing, Die Zou, Xin Ding, Jianquan Yao, Liang Wu. An all-silicon design of a high-efficiency broadband transmissive terahertz polarization convertor. Front. Optoelectron., 2023, 16(4): 40 https://doi.org/10.1007/s12200-023-00098-9

References

[1]
Nie, X.Y., Zhang, Y.L., Xiang, F.D., Lu, J.G., Huang, X., Wang, K.J., Liu, J.S., Yang, Z.G.: Cross section measurements of scale-model tactical targets by using 0.1 THz compact radar system. Chin. Opt. Lett. 15, 112201 (2017)
CrossRef Google scholar
[2]
Xiao, Z.Y., Yang, Q.J., Huang, J.G., Huang, Z.M., Zhou, W., Gao, Y.Q., Shu, R., He, Z.P.: Terahertz communication windows and their point-to-point transmission verification. Appl. Opt. 57, 7673–7680 (2018)
CrossRef Google scholar
[3]
Seeds, A.J., Shams, H., Fice, M.J., Renaud, C.C.: Terahertz photonics for wireless communications. J. Lightwave Technol. 33, 579–587 (2015)
CrossRef Google scholar
[4]
Funaki, C., Toyouchi, T., Hoshina, H., Ozaki, Y., Sato, H.: Terahertz imaging of the distribution of crystallinity and crystalline orientation in a poly(ϵ-caprolactone) film. Appl. Spectrosc.Spectrosc. 71, 1537–1542 (2017)
CrossRef Google scholar
[5]
Guerboukha, H., Nallappan, K., Skorobogatiy, M.: Toward real-time terahertz imaging. Adv. Opt. Photon. 10, 843–938 (2018)
CrossRef Google scholar
[6]
Caucheteur, C., Guo, T., Albert, J.: Polarization-assisted fiber Bragg grating sensors: tutorial and review. J. Lightwave Technol. 35, 3311–3322 (2017)
CrossRef Google scholar
[7]
Haigh, J.A., Kinebas, Y., Ramsay, A.J.: Inverse conoscopy: a method to measure polarization using patterns generated by a single birefringent crystal. Appl. Opt. 53, 184–188 (2014)
CrossRef Google scholar
[8]
Przhiyalkovskiy, Y.V., Starostin, N.I., Morshnev, S.K., Sazonov, A.I.: Polarization dynamics of light propagating in bent spun bire-fringent fiber. J. Lightwave Technol. 38, 6879–6885 (2020)
CrossRef Google scholar
[9]
Masson, J.B., Gallot, G.: Terahertz achromatic quarter-wave plate. Opt. Lett. 31, 265–267 (2006)
CrossRef Google scholar
[10]
Kaveev, A.K., Kropotov, G.I., Tsygankova, E.V., Tzibizov, I.A., Ganichev, S.D., Danilov, S.N., Olbrich, P., Zoth, C., Kaveeva, E.G., Zhdanov, A.I., Ivanov, A.A., Deyanov, R.Z., Redlich, B.: Terahertz polarization conversion with quartz waveplate sets. Appl. Opt. 52, B60–B69 (2013)
CrossRef Google scholar
[11]
Zhilin, A.A., Tagantsev, D.K., Alemaskin, M.Y., Shepilov, M.P., Zapalova, S.S., Sazonov, M.E.: Metamaterials with a network structure. J. Opt. Technol. 79, 241–245 (2012)
CrossRef Google scholar
[12]
Wang, J., Wang, S., Singh, R.J., Zhang, W.L.: Metamaterial inspired terahertz devices: from ultra-sensitive sensing to near field manipulation. Chin. Opt. Lett. 11, 011602 (2013)
CrossRef Google scholar
[13]
Cheng, Y.Z., Zhu, X.Z., Li, J., Chen, F., Luo, H., Wu, L.: Terahertz broadband tunable reflective cross-polarization convertor based on complementary cross-shaped graphene metasurface. Phys E Low Dimens. Syst. 134, 114993 (2021)
CrossRef Google scholar
[14]
Zhu, X. Z., Cheng, Y. Z., Fan, J. P., Chen, F., Luo, H., Wu, L.: Switchable efficiency terahertz anomalous refraction and focusing based on graphene metasurface. Diamond Relat Mater. 121,108743 (2022)
CrossRef Google scholar
[15]
Cheng, Y., Yu, J., Li, X.: Tri-band high-efficiency circular polarization convertor based on double-split-ring resonator structures. Appl. Phys. B 128, 1 (2022)
CrossRef Google scholar
[16]
Zhao, J., Li, N., Cheng, Y.: All-dielectric InSb metasurface for broadband and high-efficient thermal tunable terahertz reflective linear-polarization conversion. Opt. Commun.Commun. 536, 129372 (2023)
CrossRef Google scholar
[17]
Li, N., Zhao, J.C., Tang, P.Y., Cheng, Y.Z.: Design of all-metal 3D anisotropic metamaterial for ultrabroadband terahertz reflective linear polarization conversion. Phys Status Solidi B Basic Res. 260, 2300104 (2023)
CrossRef Google scholar
[18]
Sun, H., Zhang, Y.X., Wang, K.L., Zhao, Y.C., Kou, W., Liang, S.X., Han, J.G., Yang, Z.Q.: Linear polarization conversion of transmitted terahertz wave with double-layer meta-grating surfaces. Chin. Opt. Lett. 16, 081601 (2018)
CrossRef Google scholar
[19]
Cheng, Z.Z., Cheng, Y.Z.: A multi-functional polarization convertor based on chiral metamaterial for terahertz waves. Opt. Commun. Commun. 435, 178–182 (2019)
CrossRef Google scholar
[20]
Zi, J.C., Ji, Y.F., Xi, F., Xu, Q., Liu, H.C., Zhang, X.X., Han, J.G., Zhang, W.L.: Dual-functional terahertz waveplate based on all-dielectric metamaterial. Phys. Rev. Appl. 13, 034042 (2020)
CrossRef Google scholar
[21]
Kumar, A., Ghatak, A.: Polarization of light with applications in optical fibers. SPIE Press, Bellingham, WA, USA (2011)
CrossRef Google scholar
[22]
Zi, J., Xu, Q., Wang, Q., Tian, C., Li, Y., Zhang, X., Han, J., Zhang, W.: Terahertz polarization converter based on all-dielectric high birefringence metamaterial with elliptical air holes. Opt. Commun.Commun. 416, 130–136 (2018)
CrossRef Google scholar
[23]
Maxwell, J.C.: A treatise on electricity and magnetism. Clarendon Press, UK (1873)
[24]
Born, M., Wolf, E.: Principles of optics. Cambridge University Press, London (1999)
[25]
Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of ϵ and μ. Soviet Physics Uspekhi 10, 509 (1968)
CrossRef Google scholar
[26]
Fu, X., Cui, T.J.: Recent progress on metamaterials: from effective medium model to real-time information processing system. Prog. Quantum Electron. 67, 100223 (2019)
CrossRef Google scholar
[27]
Li, J., Zheng, C.L., Li, J.T., Wang, G.C., Liu, J.Y., Yue, Z., Hao, X.R., Yang, Y., Li, F.Y., Tang, T.T., Zhang, Y.T., Zhang, Y., Yao, J.Q.: Terahertz wavefront shaping with multi-channel polarization conversion based on all-dielectric metasurface. Photonics Res. 9, 1939–1947 (2021)
CrossRef Google scholar
[28]
Yan, W., Li, S., Hui, W., Feng, L., Tan, B., Tan, Y., Su, R., Wu, J., Zhang, C., Jin, B., Chen, J., Wu, P.: Broadband and efficient asymmetric wavefront manipulation via terahertz polarization-selective metasurface. Appl. Phys. Lett. 121, 151701 (2022)
CrossRef Google scholar
[29]
Lian, M., Ying, S., Liu, K., Zhang, S., Chen, X., Ren, H., Xu, Y., Chen, J., Tian, Z., Cao, T.: Nonvolatile switchable broadband polarization conversion with wearable terahertz chalcogenide metamaterials. Adv. Opt. Mater. 11, 2202439 (2023)
CrossRef Google scholar
[30]
Peng, Z., Zheng, Z., Yu, Z., Lan, H., Zhang, M., Wang, S., Li, L., Liang, H., Su, H.: Broadband absorption and polarization conversion switchable terahertz metamaterial device based on vanadium dioxide. Opt. Laser Technol. 157, 108723 (2023)
CrossRef Google scholar
[31]
Tao, X., Qi, L., Yang, J., Uqaili, J., Lan, F., Yang, Z.: Bifunctional terahertz metasurface for transmissive broadband linear-to-circular and linear polarization conversion. IEEE T THz Sci. Techn. 13, 254–261 (2023)
CrossRef Google scholar
[32]
Gutiérrez-Vega, J.C.: Pancharatnam-Berry phase of optical systems. Opt. Lett. 36, 1143–1145 (2011)
CrossRef Google scholar
[33]
Tian, Y., Jing, X.F., Yu, H., Gan, H.Y., Li, C.X., Hong, Z.: Manipulation of the arbitrary scattering angle based on all-dielectric transmissive Pancharatnam Berry phase coding metasurfaces in the visible range. Opt. Express 28, 32107–32123 (2020)
CrossRef Google scholar
[34]
Zi, J., Xu, Q., Wang, Q., Tian, C., Li, Y., Zhang, X., Han, J., Zhang, W.: Antireflection-assisted all-dielectric terahertz meta-material polarization converter. Appl. Phys. Lett. 113, 101104 (2018)
CrossRef Google scholar
[35]
Sakurai, H., Nemoto, N., Konishi, K., Takaku, R., Sakurai, Y., Katayama, N., Matsumura, T., Yumoto, J., Kuwata-Gonokami, M.: Terahertz broadband anti-reflection moth-eye structures fabricated by femtosecond laser processing. OSA Continuum. 2, 2764–2772 (2019)
CrossRef Google scholar
[36]
Tan, G.J., Lee, J., Lan, Y.H., Wei, M.K., Peng, L.H., Cheng, I.C., Wu, S.T.: Broadband antireflection film with moth-eye-like structure for flexible display applications. Optica 4, 678–683 (2017)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 The Author(s) 2023
AI Summary AI Mindmap
PDF(1604 KB)

Accesses

Citations

Detail

Sections
Recommended

/