Localized in-situ deposition: a new dimension to control in fabricating surface micro/nano structures via ultrafast laser ablation

Peixun Fan, Guochen Jiang, Xinyu Hu, Lizhong Wang, Hongjun Zhang, Minlin Zhong

PDF(2947 KB)
PDF(2947 KB)
Front. Optoelectron. ›› 2023, Vol. 16 ›› Issue (4) : 36. DOI: 10.1007/s12200-023-00092-1
RESEARCH ARTICLE

Localized in-situ deposition: a new dimension to control in fabricating surface micro/nano structures via ultrafast laser ablation

Author information +
History +

Abstract

Controllable fabrication of surface micro/nano structures is the key to realizing surface functionalization for various applications. As a versatile approach, ultrafast laser ablation has been widely studied for surface micro/nano structuring. Increasing research efforts in this field have been devoted to gaining more control over the fabrication processes to meet the increasing need for creation of complex structures. In this paper, we focus on the in-situ deposition process following the plasma formation under ultrafast laser ablation. From an overview perspective, we firstly summarize the different roles that plasma plumes, from pulsed laser ablation of solids, play in different laser processing approaches. Then, the distinctive in-situ deposition process within surface micro/nano structuring is highlighted. Our experimental work demonstrated that the in-situ deposition during ultrafast laser surface structuring can be controlled as a localized micro-additive process to pile up secondary ordered structures, through which a unique kind of hierarchical structure with fort-like bodies sitting on top of micro cone arrays were fabricated as a showcase. The revealed laser-matter interaction mechanism can be inspiring for the development of new ultrafast laser fabrication approaches, adding a new dimension and more flexibility in controlling the fabrication of functional surface micro/nano structures.

Graphical abstract

Keywords

Ultrafast laser ablation / Laser micro/nanofabrication / Surface micro/nano structures / In-situ deposition / Micro-additive fabrication

Cite this article

Download citation ▾
Peixun Fan, Guochen Jiang, Xinyu Hu, Lizhong Wang, Hongjun Zhang, Minlin Zhong. Localized in-situ deposition: a new dimension to control in fabricating surface micro/nano structures via ultrafast laser ablation. Front. Optoelectron., 2023, 16(4): 36 https://doi.org/10.1007/s12200-023-00092-1

References

[1]
Wang,D., Sun,Q., Hokkanen,M., Zhang, C., Lin,F., Liu,Q., Zhu,S., Zhou,T., Chang, Q., He,B., Zhou,Q., Chen,L., Wang,Z., Ras, R., Deng,X.: Design of robust superhydrophobic surfaces. Nature 582(7810), 55–59 (2020)
CrossRef Google scholar
[2]
Barad,H.-N., Kwon,H., Alarcón-Correa,M., Fischer,P.: Large area patterning of nanoparticles and nanostructures: current status and future prospects. ACS Nano 15(4), 5861–5875 (2021)
CrossRef Google scholar
[3]
Cao,L., Zheng,M., Wang,J., Li, S., Xu,J., Xiao,R., Huang,T.: Alloy-type lithium anode prepared by laser microcladding and dealloying for improved cycling/rate performance. ACS Nano 16(10), 17220–17228 (2022)
CrossRef Google scholar
[4]
Tian,Z., Wang,L., Zhu,D., Chen, C., Zhao,H., Peng,R., Zhang,H., Fan,P., Zhong, M.: Passive anti-icing performances of the same superhydrophobic surfaces under static freezing, dynamic supercooled-droplet impinging, and icing wind tunnel tests. ACS Appl. Mater. Interfaces 15(4), 6013–6024 (2023)
CrossRef Google scholar
[5]
Jiang,G., Wang,L., Tian,Z., Chen, C., Hu,X., Peng,R., Li,D., Zhang,H., Fan, P., Zhong,M.: Boosting water evaporation via continuous formation of a 3D thin film through triple-level super-wicking routes. Mater. Horiz.Horiz 10(9), 3523–3535 (2023)
CrossRef Google scholar
[6]
Yong,J., Chen,F., Yang,Q., Huo, J., Hou,X.: Superoleophobic surfaces. Chem. Soc. Rev. 46(14), 4168–4217 (2017)
CrossRef Google scholar
[7]
Fan,P., Pan,R., Zhong,M.: Ultrafast laser enabling hierarchical structures for versatile superhydrophobicity with enhanced Cassie-Baxter stability and durability. Langmuir 35(51), 16693–16711 (2019)
CrossRef Google scholar
[8]
Cui,M., Huang,T., Peng,Z., Xing, L., Zhou,Z., Guo,L., Wang,J., Xu,J., Xiao, R.: High-efficiency and low-intensity threshold femtosecond laser direct writing of precise metallic micropatterns on transparent substrate. Adv. Mater. Technol. 8(8), 2201610 (2023)
CrossRef Google scholar
[9]
Huang,L., Xu,K., Yuan,D., Hu, J., Wang,X., Xu,S.: Sub-wavelength patterned pulse laser lithography for efficient fabrication of large-area metasurfaces. Nat. Commun.Commun. 13(1), 5823 (2022)
CrossRef Google scholar
[10]
Xie,J., Qiao,M., Zhu,D., Yan, J., Deng,S., He,G., Luo,M., Zhao,Y.: Laser induced coffee-ring structure through solid-liquid transition for color printing. Small 19(6), 2205696 (2022)
CrossRef Google scholar
[11]
Ahmmed,K., Grambow, C., Kietzig,A.-M.: Fabrication of micro/nano structures on metals by femtosecond laser micromachining. Micromachines 5(4), 1219–1253 (2014)
CrossRef Google scholar
[12]
Wang,M., Zhao,K., Wu,J., Li, Y., Yang,Y., Huang,S., Zhao,J., Tweedle,T., Carpenter, D., Zheng,G., Yu,Q., Chen,K.: Femtosecond laser fabrication of nanograting-based distributed fiber sensors for extreme environmental applications. Int. J. Extrem. Manuf. 3(2), 025401 (2021)
CrossRef Google scholar
[13]
Bonse,J., Gräf, S.: Maxwell meets marangoni—a review of theories on laser-induced periodic surface structures. Laser Photonics Rev. 14(10), 2000215 (2020)
CrossRef Google scholar
[14]
Li,N., Fan,P., Zhu,Q., Cui, B., Silvain,J., Lu,Y.: Femtosecond laser polishing of additively manufactured parts at grazing incidence. Appl. Surf. Sci. 612, 155833 (2023)
CrossRef Google scholar
[15]
Zhang,D., Liu,R., Li,Z.: Irregular LIPSS produced on metals by single linearly polarized femtosecond laser. Int. J. Extrem. Manuf. 4(1), 015102 (2021)
CrossRef Google scholar
[16]
Geng,J., Yan,W., Shi,L., Qiu, M.: Surface plasmons interference nanogratings: wafer-scale laser direct structuring in seconds. Light. Sci. Appl. 11(1), 189 (2022)
CrossRef Google scholar
[17]
Zhang,D., Gökce, B., Barcikowski,S.: Laser synthesis and processing of colloids: fundamentals and applications. Chem. Rev. 117(5), 3990–4103 (2017)
CrossRef Google scholar
[18]
Ou,G., Fan,P., Ke,X., Xu, Y., Huang,K., Wei,H., Yu,W., Zhang,H., Zhong, M., Wu,H., Li,Y.: Defective molybdenum sulfide quantum dots as highly active hydrogen evolution electrocatalysts. Nano Res. 11(2), 751–761 (2017)
CrossRef Google scholar
[19]
Wu,Z., Lyu,Y., Zhang,Y., Ding, R., Zheng,B., Yang,Z., Lau,S., Chen,X., Hao, J.: Large-scale growth of few-layer two-dimensional black phosphorus. Nat. Mater. 20(9), 1203–1209 (2021)
CrossRef Google scholar
[20]
Qiu,P., Guo,Y., Huang,L., Li, J., Huang,J., Wang,M., Zhang,Z., Xu,S.: Patterned laser ablation of microgrooves with controllable cross-sections. Adv. Mater. Technol. 2300333 (2023)
CrossRef Google scholar
[21]
Zhu,Q., Fan,P., Li,N., Carlson, T., Cui,B., Silvain,J., Hudgins, J., Lu,Y.: Femtosecond-laser sharp shaping of millimeter-scale geometries with vertical sidewalls. Int. J. Extrem. Manuf. 3(4), 045001 (2021)
CrossRef Google scholar
[22]
Guay,J.-M., Lesina, A., Côté,G., Charron,M., Poitras, D., Ramunno,L., Berini,P., Weck,A.: Laser-induced plasmonic colours on metals. Nat. Commun.Commun. 8(1), 16095 (2017)
CrossRef Google scholar
[23]
Meng,G., Jiang,L., Li,X., Xu, Y., Shi,X., Yan,R., Lu,Y.: Dual-scale nanoripple/nanoparticle-covered microspikes on silicon by femtosecond double pulse train irradiation in water. Appl. Surf. Sci. 410, 22–28 (2017)
CrossRef Google scholar
[24]
Luo,X., Liu,W., Chen,C., Jiang, G., Hu,X., Zhang,H., Zhong,M.: Femtosecond laser micro-nano structured Ag SERS substrates with unique sensitivity, uniformity and stability for food safety evaluation. Opt. Laser Technol. 139, 106969 (2021)
CrossRef Google scholar
[25]
Liu,R., Zhang,D., Li,Z.: Femtosecond laser induced simultaneous functional nanomaterial synthesis, in situ deposition and hierarchical LIPSS nanostructuring for tunable antireflectance and iridescence applications. J. Mater. Sci. Technol. 89, 179–185 (2021)
CrossRef Google scholar
[26]
Chen,T., Wang,W., Tao,T., Pan, A., Mei,X.: Broad-band ultra-low-reflectivity multiscale micro–nano structures by the combination of femtosecond laser ablation and in situ deposition. ACS Appl. Mater. Interfaces 12(43), 49265–49274 (2020)
CrossRef Google scholar
[27]
Hamad,S., Moram,S., Yendeti,B., Podagatlapalli, G., Nageswara Rao,S.V.S., Pathak,A., Mohiddon, M., Soma,V.: Femtosecond laser-induced, nanoparticle-embedded periodic surface structures on crystalline silicon for reproducible and multi-utility SERS platforms. ACS Omega 3(12), 18420–18432 (2018)
CrossRef Google scholar
[28]
Long,J., He,Z., Ou,D., Huang, Y., Wang,P., Ren,Q., Xie,X.: Formation of dense nanostructures on femtosecond laser-processed silicon carbide surfaces. Surf. Interfaces 28, 101624 (2022)
CrossRef Google scholar
[29]
Wang,Z., Nandyala, D., Colosqui,C., Cubaud,T., Hwang,D.: Glass surface micromachining with simultaneous nanomaterial deposition by picosecond laser for wettability control. Appl. Surf. Sci. 546, 149050 (2021)
CrossRef Google scholar
[30]
Ji,Y., Zhang,Y., Zhu,J., Geng, P., Halpert,J., Guo,L.: Splashing-assisted femtosecond laser-activated metal deposition for mold-and mask-free fabrication of robust microstructured electrodes for flexible pressure sensors. Small 19(24), 2207362 (2023)
CrossRef Google scholar
[31]
Fan,P., Bai,B., Zhong,M., Zhang, H., Long,J., Han,J., Wang,W., Jin,G.: General strategy toward dual-scale-controlled metallic micro–nano hybrid structures with ultralow reflectance. ACS Nano 11(7), 7401–7408 (2017)
CrossRef Google scholar
[32]
Yang,J., Li,J., Du,Z., Gong, Q., Teng,J., Hong,M.: Laser hybrid micro/nano-structuring of Si surfaces in air and its applications for SERS detection. Sci. Rep. 4(1), 6657 (2014)
CrossRef Google scholar
[33]
Ou,G., Fan,P., Zhang,H., Huang, K., Yang,C., Yu,W., Wei,H., Zhong,M., Wu, H., Li,Y.: Large-scale hierarchical oxide nanostructures for high-performance electrocatalytic water splitting. Nano Energy 35, 207–214 (2017)
CrossRef Google scholar
[34]
Joy,N., Kietzig, A.M.: Influence of re-deposited nanoparticles on the surface elemental composition of femtosecond laser machined copper surfaces. Surf. Interfaces 41, 103173 (2023)
CrossRef Google scholar
[35]
Pan,A., Mei,X., Wang,W., Xia, Y., Su,Y., Zhao,S., Chen,T.: In-situ deposition of oxidized porous metal nanoparticles on the surface of picosecond laser-induced micro/nano structures: A new kind of meta-surface equipped with both super-hydrophobicity and anti-reflectivity. Chem. Eng. J. 460, 141582 (2023)
CrossRef Google scholar
[36]
Shugaev,M.V., Wu,C., Armbruster,O., Naghilou,A., Brouwer, N., Ivanov,D.S., Derrien,T.J.-Y., Bulgakova, N.M., Kautek,W., Rethfeld,B., Zhigilei, L.V.: Fundamentals of ultrafast laser–material interaction. MRS Bull. 41(12), 960–968 (2016)
CrossRef Google scholar
[37]
Cheng,J., Liu,C., Shang,S., Liu, D., Perrie,W., Dearden,G., Watkins, K.: A review of ultrafast laser materials micromachining. Opt. Laser Technol. 46, 88–102 (2013)
CrossRef Google scholar
[38]
Gu,D., Shi,X., Poprawe,R., Bourell, D.L., Setchi,R., Zhu,J.: Material-structure-performance integrated laser-metal additive manufacturing. Science 372, 932 (2021)
CrossRef Google scholar
[39]
Wang,H., Zhang,W., Ladika,D., Yu, H., Gailevičius,D., Wang,H., Pan, C.F., Nair,P.N.S., Ke,Y., Mori,T., Chan,J., Ruan, Q., Farsari,M., Malinauskas,M., Juodkazis, S., Gu,M., Yang,J.K.W.: Two-photon polymerization lithography for optics and photonics: fundamentals, materials, technologies, and applications. Adv. Funct. Mater. 2214211 (2023)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 The Author(s) 2023
AI Summary AI Mindmap
PDF(2947 KB)

Accesses

Citations

Detail

Sections
Recommended

/