Localized in-situ deposition: a new dimension to control in fabricating surface micro/nano structures via ultrafast laser ablation
Peixun Fan, Guochen Jiang, Xinyu Hu, Lizhong Wang, Hongjun Zhang, Minlin Zhong
Localized in-situ deposition: a new dimension to control in fabricating surface micro/nano structures via ultrafast laser ablation
Controllable fabrication of surface micro/nano structures is the key to realizing surface functionalization for various applications. As a versatile approach, ultrafast laser ablation has been widely studied for surface micro/nano structuring. Increasing research efforts in this field have been devoted to gaining more control over the fabrication processes to meet the increasing need for creation of complex structures. In this paper, we focus on the in-situ deposition process following the plasma formation under ultrafast laser ablation. From an overview perspective, we firstly summarize the different roles that plasma plumes, from pulsed laser ablation of solids, play in different laser processing approaches. Then, the distinctive in-situ deposition process within surface micro/nano structuring is highlighted. Our experimental work demonstrated that the in-situ deposition during ultrafast laser surface structuring can be controlled as a localized micro-additive process to pile up secondary ordered structures, through which a unique kind of hierarchical structure with fort-like bodies sitting on top of micro cone arrays were fabricated as a showcase. The revealed laser-matter interaction mechanism can be inspiring for the development of new ultrafast laser fabrication approaches, adding a new dimension and more flexibility in controlling the fabrication of functional surface micro/nano structures.
Ultrafast laser ablation / Laser micro/nanofabrication / Surface micro/nano structures / In-situ deposition / Micro-additive fabrication
[1] |
Wang,D., Sun,Q., Hokkanen,M., Zhang, C., Lin,F., Liu,Q., Zhu,S., Zhou,T., Chang, Q., He,B., Zhou,Q., Chen,L., Wang,Z., Ras, R., Deng,X.: Design of robust superhydrophobic surfaces. Nature 582(7810), 55–59 (2020)
CrossRef
Google scholar
|
[2] |
Barad,H.-N., Kwon,H., Alarcón-Correa,M., Fischer,P.: Large area patterning of nanoparticles and nanostructures: current status and future prospects. ACS Nano 15(4), 5861–5875 (2021)
CrossRef
Google scholar
|
[3] |
Cao,L., Zheng,M., Wang,J., Li, S., Xu,J., Xiao,R., Huang,T.: Alloy-type lithium anode prepared by laser microcladding and dealloying for improved cycling/rate performance. ACS Nano 16(10), 17220–17228 (2022)
CrossRef
Google scholar
|
[4] |
Tian,Z., Wang,L., Zhu,D., Chen, C., Zhao,H., Peng,R., Zhang,H., Fan,P., Zhong, M.: Passive anti-icing performances of the same superhydrophobic surfaces under static freezing, dynamic supercooled-droplet impinging, and icing wind tunnel tests. ACS Appl. Mater. Interfaces 15(4), 6013–6024 (2023)
CrossRef
Google scholar
|
[5] |
Jiang,G., Wang,L., Tian,Z., Chen, C., Hu,X., Peng,R., Li,D., Zhang,H., Fan, P., Zhong,M.: Boosting water evaporation via continuous formation of a 3D thin film through triple-level super-wicking routes. Mater. Horiz.Horiz 10(9), 3523–3535 (2023)
CrossRef
Google scholar
|
[6] |
Yong,J., Chen,F., Yang,Q., Huo, J., Hou,X.: Superoleophobic surfaces. Chem. Soc. Rev. 46(14), 4168–4217 (2017)
CrossRef
Google scholar
|
[7] |
Fan,P., Pan,R., Zhong,M.: Ultrafast laser enabling hierarchical structures for versatile superhydrophobicity with enhanced Cassie-Baxter stability and durability. Langmuir 35(51), 16693–16711 (2019)
CrossRef
Google scholar
|
[8] |
Cui,M., Huang,T., Peng,Z., Xing, L., Zhou,Z., Guo,L., Wang,J., Xu,J., Xiao, R.: High-efficiency and low-intensity threshold femtosecond laser direct writing of precise metallic micropatterns on transparent substrate. Adv. Mater. Technol. 8(8), 2201610 (2023)
CrossRef
Google scholar
|
[9] |
Huang,L., Xu,K., Yuan,D., Hu, J., Wang,X., Xu,S.: Sub-wavelength patterned pulse laser lithography for efficient fabrication of large-area metasurfaces. Nat. Commun.Commun. 13(1), 5823 (2022)
CrossRef
Google scholar
|
[10] |
Xie,J., Qiao,M., Zhu,D., Yan, J., Deng,S., He,G., Luo,M., Zhao,Y.: Laser induced coffee-ring structure through solid-liquid transition for color printing. Small 19(6), 2205696 (2022)
CrossRef
Google scholar
|
[11] |
Ahmmed,K., Grambow, C., Kietzig,A.-M.: Fabrication of micro/nano structures on metals by femtosecond laser micromachining. Micromachines 5(4), 1219–1253 (2014)
CrossRef
Google scholar
|
[12] |
Wang,M., Zhao,K., Wu,J., Li, Y., Yang,Y., Huang,S., Zhao,J., Tweedle,T., Carpenter, D., Zheng,G., Yu,Q., Chen,K.: Femtosecond laser fabrication of nanograting-based distributed fiber sensors for extreme environmental applications. Int. J. Extrem. Manuf. 3(2), 025401 (2021)
CrossRef
Google scholar
|
[13] |
Bonse,J., Gräf, S.: Maxwell meets marangoni—a review of theories on laser-induced periodic surface structures. Laser Photonics Rev. 14(10), 2000215 (2020)
CrossRef
Google scholar
|
[14] |
Li,N., Fan,P., Zhu,Q., Cui, B., Silvain,J., Lu,Y.: Femtosecond laser polishing of additively manufactured parts at grazing incidence. Appl. Surf. Sci. 612, 155833 (2023)
CrossRef
Google scholar
|
[15] |
Zhang,D., Liu,R., Li,Z.: Irregular LIPSS produced on metals by single linearly polarized femtosecond laser. Int. J. Extrem. Manuf. 4(1), 015102 (2021)
CrossRef
Google scholar
|
[16] |
Geng,J., Yan,W., Shi,L., Qiu, M.: Surface plasmons interference nanogratings: wafer-scale laser direct structuring in seconds. Light. Sci. Appl. 11(1), 189 (2022)
CrossRef
Google scholar
|
[17] |
Zhang,D., Gökce, B., Barcikowski,S.: Laser synthesis and processing of colloids: fundamentals and applications. Chem. Rev. 117(5), 3990–4103 (2017)
CrossRef
Google scholar
|
[18] |
Ou,G., Fan,P., Ke,X., Xu, Y., Huang,K., Wei,H., Yu,W., Zhang,H., Zhong, M., Wu,H., Li,Y.: Defective molybdenum sulfide quantum dots as highly active hydrogen evolution electrocatalysts. Nano Res. 11(2), 751–761 (2017)
CrossRef
Google scholar
|
[19] |
Wu,Z., Lyu,Y., Zhang,Y., Ding, R., Zheng,B., Yang,Z., Lau,S., Chen,X., Hao, J.: Large-scale growth of few-layer two-dimensional black phosphorus. Nat. Mater. 20(9), 1203–1209 (2021)
CrossRef
Google scholar
|
[20] |
Qiu,P., Guo,Y., Huang,L., Li, J., Huang,J., Wang,M., Zhang,Z., Xu,S.: Patterned laser ablation of microgrooves with controllable cross-sections. Adv. Mater. Technol. 2300333 (2023)
CrossRef
Google scholar
|
[21] |
Zhu,Q., Fan,P., Li,N., Carlson, T., Cui,B., Silvain,J., Hudgins, J., Lu,Y.: Femtosecond-laser sharp shaping of millimeter-scale geometries with vertical sidewalls. Int. J. Extrem. Manuf. 3(4), 045001 (2021)
CrossRef
Google scholar
|
[22] |
Guay,J.-M., Lesina, A., Côté,G., Charron,M., Poitras, D., Ramunno,L., Berini,P., Weck,A.: Laser-induced plasmonic colours on metals. Nat. Commun.Commun. 8(1), 16095 (2017)
CrossRef
Google scholar
|
[23] |
Meng,G., Jiang,L., Li,X., Xu, Y., Shi,X., Yan,R., Lu,Y.: Dual-scale nanoripple/nanoparticle-covered microspikes on silicon by femtosecond double pulse train irradiation in water. Appl. Surf. Sci. 410, 22–28 (2017)
CrossRef
Google scholar
|
[24] |
Luo,X., Liu,W., Chen,C., Jiang, G., Hu,X., Zhang,H., Zhong,M.: Femtosecond laser micro-nano structured Ag SERS substrates with unique sensitivity, uniformity and stability for food safety evaluation. Opt. Laser Technol. 139, 106969 (2021)
CrossRef
Google scholar
|
[25] |
Liu,R., Zhang,D., Li,Z.: Femtosecond laser induced simultaneous functional nanomaterial synthesis, in situ deposition and hierarchical LIPSS nanostructuring for tunable antireflectance and iridescence applications. J. Mater. Sci. Technol. 89, 179–185 (2021)
CrossRef
Google scholar
|
[26] |
Chen,T., Wang,W., Tao,T., Pan, A., Mei,X.: Broad-band ultra-low-reflectivity multiscale micro–nano structures by the combination of femtosecond laser ablation and in situ deposition. ACS Appl. Mater. Interfaces 12(43), 49265–49274 (2020)
CrossRef
Google scholar
|
[27] |
Hamad,S., Moram,S., Yendeti,B., Podagatlapalli, G., Nageswara Rao,S.V.S., Pathak,A., Mohiddon, M., Soma,V.: Femtosecond laser-induced, nanoparticle-embedded periodic surface structures on crystalline silicon for reproducible and multi-utility SERS platforms. ACS Omega 3(12), 18420–18432 (2018)
CrossRef
Google scholar
|
[28] |
Long,J., He,Z., Ou,D., Huang, Y., Wang,P., Ren,Q., Xie,X.: Formation of dense nanostructures on femtosecond laser-processed silicon carbide surfaces. Surf. Interfaces 28, 101624 (2022)
CrossRef
Google scholar
|
[29] |
Wang,Z., Nandyala, D., Colosqui,C., Cubaud,T., Hwang,D.: Glass surface micromachining with simultaneous nanomaterial deposition by picosecond laser for wettability control. Appl. Surf. Sci. 546, 149050 (2021)
CrossRef
Google scholar
|
[30] |
Ji,Y., Zhang,Y., Zhu,J., Geng, P., Halpert,J., Guo,L.: Splashing-assisted femtosecond laser-activated metal deposition for mold-and mask-free fabrication of robust microstructured electrodes for flexible pressure sensors. Small 19(24), 2207362 (2023)
CrossRef
Google scholar
|
[31] |
Fan,P., Bai,B., Zhong,M., Zhang, H., Long,J., Han,J., Wang,W., Jin,G.: General strategy toward dual-scale-controlled metallic micro–nano hybrid structures with ultralow reflectance. ACS Nano 11(7), 7401–7408 (2017)
CrossRef
Google scholar
|
[32] |
Yang,J., Li,J., Du,Z., Gong, Q., Teng,J., Hong,M.: Laser hybrid micro/nano-structuring of Si surfaces in air and its applications for SERS detection. Sci. Rep. 4(1), 6657 (2014)
CrossRef
Google scholar
|
[33] |
Ou,G., Fan,P., Zhang,H., Huang, K., Yang,C., Yu,W., Wei,H., Zhong,M., Wu, H., Li,Y.: Large-scale hierarchical oxide nanostructures for high-performance electrocatalytic water splitting. Nano Energy 35, 207–214 (2017)
CrossRef
Google scholar
|
[34] |
Joy,N., Kietzig, A.M.: Influence of re-deposited nanoparticles on the surface elemental composition of femtosecond laser machined copper surfaces. Surf. Interfaces 41, 103173 (2023)
CrossRef
Google scholar
|
[35] |
Pan,A., Mei,X., Wang,W., Xia, Y., Su,Y., Zhao,S., Chen,T.: In-situ deposition of oxidized porous metal nanoparticles on the surface of picosecond laser-induced micro/nano structures: A new kind of meta-surface equipped with both super-hydrophobicity and anti-reflectivity. Chem. Eng. J. 460, 141582 (2023)
CrossRef
Google scholar
|
[36] |
Shugaev,M.V., Wu,C., Armbruster,O., Naghilou,A., Brouwer, N., Ivanov,D.S., Derrien,T.J.-Y., Bulgakova, N.M., Kautek,W., Rethfeld,B., Zhigilei, L.V.: Fundamentals of ultrafast laser–material interaction. MRS Bull. 41(12), 960–968 (2016)
CrossRef
Google scholar
|
[37] |
Cheng,J., Liu,C., Shang,S., Liu, D., Perrie,W., Dearden,G., Watkins, K.: A review of ultrafast laser materials micromachining. Opt. Laser Technol. 46, 88–102 (2013)
CrossRef
Google scholar
|
[38] |
Gu,D., Shi,X., Poprawe,R., Bourell, D.L., Setchi,R., Zhu,J.: Material-structure-performance integrated laser-metal additive manufacturing. Science 372, 932 (2021)
CrossRef
Google scholar
|
[39] |
Wang,H., Zhang,W., Ladika,D., Yu, H., Gailevičius,D., Wang,H., Pan, C.F., Nair,P.N.S., Ke,Y., Mori,T., Chan,J., Ruan, Q., Farsari,M., Malinauskas,M., Juodkazis, S., Gu,M., Yang,J.K.W.: Two-photon polymerization lithography for optics and photonics: fundamentals, materials, technologies, and applications. Adv. Funct. Mater. 2214211 (2023)
CrossRef
Google scholar
|
/
〈 | 〉 |