Study of the growth mechanism of a self-assembled and ordered multi-dimensional heterojunction at atomic resolution
Zunyu Liu, Chaoyu Zhao, Shuangfeng Jia, Weiwei Meng, Pei Li, Shuwen Yan, Yongfa Cheng, Jinshui Miao, Lei Zhang, Yihua Gao, Jianbo Wang, Luying Li
Study of the growth mechanism of a self-assembled and ordered multi-dimensional heterojunction at atomic resolution
Multi-dimensional heterojunction materials have attracted much attention due to their intriguing properties, such as high efficiency, wide band gap regulation, low dimensional limitation, versatility and scalability. To further improve the performance of materials, researchers have combined materials with various dimensions using a wide variety of techniques. However, research on growth mechanism of such composite materials is still lacking. In this paper, the growth mechanism of multidimensional heterojunction composite material is studied using quasi-two-dimensional (quasi-2D) antimonene and quasione-dimensional (quasi-1D) antimony sulfide as examples. These are synthesized by a simple thermal injection method. It is observed that the consequent nanorods are oriented along six-fold symmetric directions on the nanoplate, forming ordered quasi-1D/quasi-2D heterostructures. Comprehensive transmission electron microscopy (TEM) characterizations confirm the chemical information and reveal orientational relationship between Sb2S3 nanorods and the Sb nanoplate as substrate. Further density functional theory calculations indicate that interfacial binding energy is the primary deciding factor for the self-assembly of ordered structures. These details may fill the gaps in the research on multi-dimensional composite materials with ordered structures, and promote their future versatile applications.
Multi-dimensional composite materials / Ordered heterostructures / Self-assembly / Growth mechanism
[1] |
Meng,Q., Guan,M., Huang,Y., Li, L., Wu,F., Chen,R.: Multidimensional Co3O4/NiO heterojunctions with rich-boundaries incorporated into reduced graphene oxide network for expanding the range of lithiophilic host. InfoMat. 4(8), e12313 (2022)
CrossRef
Google scholar
|
[2] |
Low,J., Yu,J., Jaroniec,M., Wageh, S., Al-Ghamdi,A.A.: Heterojunction photocatalysts. Adv. Mater. 29(20), 1601694 (2017)
CrossRef
Google scholar
|
[3] |
Yang,J., Zhu,X., Yu,Q., He, M., Zhang,W., Mo,Z., Yuan,J., She,Y., Xu, H., Li,H.: Multidimensional In2O3/In2S3 heterojunction with lattice distortion for CO2 photoconversion. Chin. J. Catal. 43(5), 1286–1294 (2022)
CrossRef
Google scholar
|
[4] |
Gu,H., Liang,C., Xia,Y., Wei, Q., Liu,T., Yang,Y., Hui,W., Chen,H., Niu, T., Chao,L., Wu,Z., Xie,X., Qiu,J., Shao, G., Gao,X., Xing,G., Chen,Y., Huang,W.: Nanoscale hybrid multidimensional perovskites with alternating cations for high performance photovoltaic. Nano Energy 65, 104050 (2019)
CrossRef
Google scholar
|
[5] |
Ge,M., Hao,H., Lv,Q., Wu, J., Li,W.: Hierarchical nanocomposite that coupled nitrogen-doped graphene with aligned PANI cores arrays for high-performance supercapacitor. Electrochim. Acta 330, 135236 (2020)
CrossRef
Google scholar
|
[6] |
Cheng,Y., Ma,Y., Li,L., Zhu, M., Yue,Y., Liu,W., Wang,L., Jia,S., Li, C., Qi,T., Wang,J., Gao,Y.: Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor. ACS Nano 14(2), 2145–2155 (2020)
CrossRef
Google scholar
|
[7] |
Chen,C., Qiu,S., Cui,M., Qin, S., Yan,G., Zhao,H., Wang,L., Xue,Q.: Achieving high performance corrosion and wear resistant epoxy coatings via incorporation of noncovalent functionalized graphene. Carbon 114, 356–366 (2017)
CrossRef
Google scholar
|
[8] |
Zhang,L., Gong,T., Yu,Z., Dai, H., Yang,Z., Chen,G., Li,J., Pan,R., Wang, H., Guo,Z., Zhang,H., Fu,X.: Recent advances in hybridization, doping, and functionalization of 2D Xenes. Adv. Funct. Mater. 31(1), 2005471 (2021)
CrossRef
Google scholar
|
[9] |
Song,Y., Liang,Z., Jiang,X., Chen, Y., Li,Z., Lu,L., Ge,Y., Wang,K., Zheng, J., Lu,S., Ji,J., Zhang,H.: Few-layer anti-monene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability. 2D Mater. 4(4), 045010 (2017)
CrossRef
Google scholar
|
[10] |
Tao,W., Ji,X., Zhu,X., Li, L., Wang,J., Zhang,Y., Saw,P.E., Li,W., Kong, N., Islam,M.A., Gan,T., Zeng,X., Zhang,H., Mahmoudi, M., Tearney,G.J., Farokhzad,O.C.: Two-dimensional antimonene-based photonic nanomedicine for cancer theranostics. Adv. Mater. 30(38), 1802061 (2018)
CrossRef
Google scholar
|
[11] |
Song,Y., Chen,Y., Jiang,X., Liang, W., Wang,K., Liang,Z., Ge,Y., Zhang,F., Wu, L., Zheng,J., Ji,J., Zhang,H.: Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion. Adv. Opt. Mater. 6(13), 1701287 (2018)
CrossRef
Google scholar
|
[12] |
Tang,X., Hu,L., Fan,T., Zhang, L., Zhu,L., Li,H., Liu,H., Liang,J., Wang, K., Li,Z., Ruan,S., Zhang,Y., Fan,D., Chen, W., Zeng,Y.-J., Zhang,H.: Robust above-room-temperature ferromagnetism in few-layer antimonene triggered by nonmagnetic adatoms. Adv. Funct. Mater. 29(15), 1808746 (2019)
CrossRef
Google scholar
|
[13] |
Zhao,T., Guo,J., Li,T., Wang, Z., Peng,M., Zhong,F., Chen,Y., Yu,Y., Xu, T., Xie,R., Gao,P., Wang,X., Hu,W.: Substrate engineering for wafer-scale two-dimensional material growth: strategies, mechanisms, and perspectives. Chem. Soc. Rev. 52(5), 1650–1671 (2023)
CrossRef
Google scholar
|
[14] |
Wang,Z., Xia,H., Wang,P., Zhou, X., Liu,C., Zhang,Q., Wang,F., Huang,M., Chen, S., Wu,P., Chen,Y., Ye,J., Huang,S., Yan, H., Gu,L., Miao,J., Li,T., Chen,X., Lu, W., Zhou,P., Hu,W.: Controllable doping in 2D layered materials. Adv. Mater. 33(48), 2104942 (2021)
CrossRef
Google scholar
|
[15] |
Chen,J., Qi,J., Liu,R., Zhu, X., Wan,Z., Zhao,Q., Tao,S., Dong,C., Ashebir, G.Y., Chen,W., Peng,R., Zhang,F., Yang,S., Tian, X., Wang,M.: Preferentially oriented large antimony trisulfide single-crystalline cuboids grown on polycrystalline titania film for solar cells. Commun Chem. 2(1), 121 (2019)
CrossRef
Google scholar
|
[16] |
Lian,W., Jiang,C., Yin,Y., Tang, R., Li,G., Zhang,L., Che,B., Chen,T.: Revealing composition and structure dependent deeplevel defect in antimony trisulfide photovoltaics. Nat. Commun. 12(1), 3260 (2021)
CrossRef
Google scholar
|
[17] |
Xie,F., Zhang,L., Gu,Q., Chao, D., Jaroniec,M., Qiao,S.-Z.: Multi-shell hollow structured Sb2S3 for sodium-ion batteries with enhanced energy density. Nano Energy 60, 591–599 (2019)
CrossRef
Google scholar
|
[18] |
Li,L., Cheng,Y., Cao,H., Liang, Z., Liu,Z., Yan,S., Li,L., Jia,S., Wang, J., Gao,Y.: MXene/rGO/PS spheres multiple physical networks as high-performance pressure sensor. Nano Energy 95, 106986 (2022)
CrossRef
Google scholar
|
[19] |
Cheng,Y., Li,L., Liu,Z., Yan, S., Cheng,F., Yue,Y., Jia,S., Wang,J., Gao, Y., Li,L.: 3D Porous MXene aerogel through gas foaming for multifunctional pressure sensor. Research 2022, 9843268 (2022)
CrossRef
Google scholar
|
[20] |
Ji,X., Lee,K.T., Nazar,L.F.: A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8(6), 500–506 (2009)
CrossRef
Google scholar
|
[21] |
Li,F., Xue,M., Li,J., Ma, X., Chen,L., Zhang,X., MacFarlane, D.R., Zhang,J.: Unlocking the electrocatalytic activity of antimony for CO2 reduction by two-dimensional engineering of the bulk material. Angew. Chem. Int. Ed. 56(46), 14718–14722 (2017)
CrossRef
Google scholar
|
[22] |
Kresse,G., Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47(1), 558–561 (1993)
CrossRef
Google scholar
|
[23] |
Kresse,G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996)
CrossRef
Google scholar
|
[24] |
Blöchl,P.E.: Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994)
CrossRef
Google scholar
|
[25] |
Kresse,G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999)
CrossRef
Google scholar
|
[26] |
Perdew,J.P., Burke,K., Ernzerhof,M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)
CrossRef
Google scholar
|
[27] |
Grimme,S., Antony, J., Ehrlich,S., Krieg,H.: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010)
CrossRef
Google scholar
|
/
〈 | 〉 |