Study of the growth mechanism of a self-assembled and ordered multi-dimensional heterojunction at atomic resolution

Zunyu Liu, Chaoyu Zhao, Shuangfeng Jia, Weiwei Meng, Pei Li, Shuwen Yan, Yongfa Cheng, Jinshui Miao, Lei Zhang, Yihua Gao, Jianbo Wang, Luying Li

PDF(1983 KB)
PDF(1983 KB)
Front. Optoelectron. ›› 2023, Vol. 16 ›› Issue (4) : 35. DOI: 10.1007/s12200-023-00091-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Study of the growth mechanism of a self-assembled and ordered multi-dimensional heterojunction at atomic resolution

Author information +
History +

Abstract

Multi-dimensional heterojunction materials have attracted much attention due to their intriguing properties, such as high efficiency, wide band gap regulation, low dimensional limitation, versatility and scalability. To further improve the performance of materials, researchers have combined materials with various dimensions using a wide variety of techniques. However, research on growth mechanism of such composite materials is still lacking. In this paper, the growth mechanism of multidimensional heterojunction composite material is studied using quasi-two-dimensional (quasi-2D) antimonene and quasione-dimensional (quasi-1D) antimony sulfide as examples. These are synthesized by a simple thermal injection method. It is observed that the consequent nanorods are oriented along six-fold symmetric directions on the nanoplate, forming ordered quasi-1D/quasi-2D heterostructures. Comprehensive transmission electron microscopy (TEM) characterizations confirm the chemical information and reveal orientational relationship between Sb2S3 nanorods and the Sb nanoplate as substrate. Further density functional theory calculations indicate that interfacial binding energy is the primary deciding factor for the self-assembly of ordered structures. These details may fill the gaps in the research on multi-dimensional composite materials with ordered structures, and promote their future versatile applications.

Graphical abstract

Keywords

Multi-dimensional composite materials / Ordered heterostructures / Self-assembly / Growth mechanism

Cite this article

Download citation ▾
Zunyu Liu, Chaoyu Zhao, Shuangfeng Jia, Weiwei Meng, Pei Li, Shuwen Yan, Yongfa Cheng, Jinshui Miao, Lei Zhang, Yihua Gao, Jianbo Wang, Luying Li. Study of the growth mechanism of a self-assembled and ordered multi-dimensional heterojunction at atomic resolution. Front. Optoelectron., 2023, 16(4): 35 https://doi.org/10.1007/s12200-023-00091-2

References

[1]
Meng,Q., Guan,M., Huang,Y., Li, L., Wu,F., Chen,R.: Multidimensional Co3O4/NiO heterojunctions with rich-boundaries incorporated into reduced graphene oxide network for expanding the range of lithiophilic host. InfoMat. 4(8), e12313 (2022)
CrossRef Google scholar
[2]
Low,J., Yu,J., Jaroniec,M., Wageh, S., Al-Ghamdi,A.A.: Heterojunction photocatalysts. Adv. Mater. 29(20), 1601694 (2017)
CrossRef Google scholar
[3]
Yang,J., Zhu,X., Yu,Q., He, M., Zhang,W., Mo,Z., Yuan,J., She,Y., Xu, H., Li,H.: Multidimensional In2O3/In2S3 heterojunction with lattice distortion for CO2 photoconversion. Chin. J. Catal. 43(5), 1286–1294 (2022)
CrossRef Google scholar
[4]
Gu,H., Liang,C., Xia,Y., Wei, Q., Liu,T., Yang,Y., Hui,W., Chen,H., Niu, T., Chao,L., Wu,Z., Xie,X., Qiu,J., Shao, G., Gao,X., Xing,G., Chen,Y., Huang,W.: Nanoscale hybrid multidimensional perovskites with alternating cations for high performance photovoltaic. Nano Energy 65, 104050 (2019)
CrossRef Google scholar
[5]
Ge,M., Hao,H., Lv,Q., Wu, J., Li,W.: Hierarchical nanocomposite that coupled nitrogen-doped graphene with aligned PANI cores arrays for high-performance supercapacitor. Electrochim. Acta 330, 135236 (2020)
CrossRef Google scholar
[6]
Cheng,Y., Ma,Y., Li,L., Zhu, M., Yue,Y., Liu,W., Wang,L., Jia,S., Li, C., Qi,T., Wang,J., Gao,Y.: Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor. ACS Nano 14(2), 2145–2155 (2020)
CrossRef Google scholar
[7]
Chen,C., Qiu,S., Cui,M., Qin, S., Yan,G., Zhao,H., Wang,L., Xue,Q.: Achieving high performance corrosion and wear resistant epoxy coatings via incorporation of noncovalent functionalized graphene. Carbon 114, 356–366 (2017)
CrossRef Google scholar
[8]
Zhang,L., Gong,T., Yu,Z., Dai, H., Yang,Z., Chen,G., Li,J., Pan,R., Wang, H., Guo,Z., Zhang,H., Fu,X.: Recent advances in hybridization, doping, and functionalization of 2D Xenes. Adv. Funct. Mater. 31(1), 2005471 (2021)
CrossRef Google scholar
[9]
Song,Y., Liang,Z., Jiang,X., Chen, Y., Li,Z., Lu,L., Ge,Y., Wang,K., Zheng, J., Lu,S., Ji,J., Zhang,H.: Few-layer anti-monene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability. 2D Mater. 4(4), 045010 (2017)
CrossRef Google scholar
[10]
Tao,W., Ji,X., Zhu,X., Li, L., Wang,J., Zhang,Y., Saw,P.E., Li,W., Kong, N., Islam,M.A., Gan,T., Zeng,X., Zhang,H., Mahmoudi, M., Tearney,G.J., Farokhzad,O.C.: Two-dimensional antimonene-based photonic nanomedicine for cancer theranostics. Adv. Mater. 30(38), 1802061 (2018)
CrossRef Google scholar
[11]
Song,Y., Chen,Y., Jiang,X., Liang, W., Wang,K., Liang,Z., Ge,Y., Zhang,F., Wu, L., Zheng,J., Ji,J., Zhang,H.: Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion. Adv. Opt. Mater. 6(13), 1701287 (2018)
CrossRef Google scholar
[12]
Tang,X., Hu,L., Fan,T., Zhang, L., Zhu,L., Li,H., Liu,H., Liang,J., Wang, K., Li,Z., Ruan,S., Zhang,Y., Fan,D., Chen, W., Zeng,Y.-J., Zhang,H.: Robust above-room-temperature ferromagnetism in few-layer antimonene triggered by nonmagnetic adatoms. Adv. Funct. Mater. 29(15), 1808746 (2019)
CrossRef Google scholar
[13]
Zhao,T., Guo,J., Li,T., Wang, Z., Peng,M., Zhong,F., Chen,Y., Yu,Y., Xu, T., Xie,R., Gao,P., Wang,X., Hu,W.: Substrate engineering for wafer-scale two-dimensional material growth: strategies, mechanisms, and perspectives. Chem. Soc. Rev. 52(5), 1650–1671 (2023)
CrossRef Google scholar
[14]
Wang,Z., Xia,H., Wang,P., Zhou, X., Liu,C., Zhang,Q., Wang,F., Huang,M., Chen, S., Wu,P., Chen,Y., Ye,J., Huang,S., Yan, H., Gu,L., Miao,J., Li,T., Chen,X., Lu, W., Zhou,P., Hu,W.: Controllable doping in 2D layered materials. Adv. Mater. 33(48), 2104942 (2021)
CrossRef Google scholar
[15]
Chen,J., Qi,J., Liu,R., Zhu, X., Wan,Z., Zhao,Q., Tao,S., Dong,C., Ashebir, G.Y., Chen,W., Peng,R., Zhang,F., Yang,S., Tian, X., Wang,M.: Preferentially oriented large antimony trisulfide single-crystalline cuboids grown on polycrystalline titania film for solar cells. Commun Chem. 2(1), 121 (2019)
CrossRef Google scholar
[16]
Lian,W., Jiang,C., Yin,Y., Tang, R., Li,G., Zhang,L., Che,B., Chen,T.: Revealing composition and structure dependent deeplevel defect in antimony trisulfide photovoltaics. Nat. Commun. 12(1), 3260 (2021)
CrossRef Google scholar
[17]
Xie,F., Zhang,L., Gu,Q., Chao, D., Jaroniec,M., Qiao,S.-Z.: Multi-shell hollow structured Sb2S3 for sodium-ion batteries with enhanced energy density. Nano Energy 60, 591–599 (2019)
CrossRef Google scholar
[18]
Li,L., Cheng,Y., Cao,H., Liang, Z., Liu,Z., Yan,S., Li,L., Jia,S., Wang, J., Gao,Y.: MXene/rGO/PS spheres multiple physical networks as high-performance pressure sensor. Nano Energy 95, 106986 (2022)
CrossRef Google scholar
[19]
Cheng,Y., Li,L., Liu,Z., Yan, S., Cheng,F., Yue,Y., Jia,S., Wang,J., Gao, Y., Li,L.: 3D Porous MXene aerogel through gas foaming for multifunctional pressure sensor. Research 2022, 9843268 (2022)
CrossRef Google scholar
[20]
Ji,X., Lee,K.T., Nazar,L.F.: A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8(6), 500–506 (2009)
CrossRef Google scholar
[21]
Li,F., Xue,M., Li,J., Ma, X., Chen,L., Zhang,X., MacFarlane, D.R., Zhang,J.: Unlocking the electrocatalytic activity of antimony for CO2 reduction by two-dimensional engineering of the bulk material. Angew. Chem. Int. Ed. 56(46), 14718–14722 (2017)
CrossRef Google scholar
[22]
Kresse,G., Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47(1), 558–561 (1993)
CrossRef Google scholar
[23]
Kresse,G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996)
CrossRef Google scholar
[24]
Blöchl,P.E.: Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994)
CrossRef Google scholar
[25]
Kresse,G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999)
CrossRef Google scholar
[26]
Perdew,J.P., Burke,K., Ernzerhof,M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)
CrossRef Google scholar
[27]
Grimme,S., Antony, J., Ehrlich,S., Krieg,H.: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 The Author(s) 2023
AI Summary AI Mindmap
PDF(1983 KB)

Accesses

Citations

Detail

Sections
Recommended

/