Organic fluorescent probes for live-cell super-resolution imaging

Xinxin Duan, Meng Zhang, Yu-Hui Zhang

PDF(3288 KB)
PDF(3288 KB)
Front. Optoelectron. ›› 2023, Vol. 16 ›› Issue (4) : 34. DOI: 10.1007/s12200-023-00090-3
MINI REVIEW
MINI REVIEW

Organic fluorescent probes for live-cell super-resolution imaging

Author information +
History +

Abstract

The development of super-resolution technology has made it possible to investigate the ultrastructure of intracellular organelles by fluorescence microscopy, which has greatly facilitated the development of life sciences and biomedicine. To realize super-resolution imaging of living cells, both advanced imaging systems and excellent fluorescent probes are required. Traditional fluorescent probes have good availability, but that is not the case for probes for live-cell super-resolution imaging. In this review, we first introduce the principles of various super-resolution technologies and their probe requirements, then summarize the existing designs and delivery strategies of super-resolution probes for live-cell imaging, and finally provide a brief conclusion and overview of the future.

Graphical abstract

Keywords

Super-resolution imaging / Organic fluorescent dyes / Live-cell imaging / Cell-impermeable organic probes

Cite this article

Download citation ▾
Xinxin Duan, Meng Zhang, Yu-Hui Zhang. Organic fluorescent probes for live-cell super-resolution imaging. Front. Optoelectron., 2023, 16(4): 34 https://doi.org/10.1007/s12200-023-00090-3

References

[1]
Shen,K., Pender, C.L., Bar-Ziv,R., Zhang,H., Wickham, K., Willey,E., Durieux,J., Ahmad,Q., Dillin,A.: Mitochondria as cellular and organismal signaling hubs. Annu. Rev. Cell Dev. Biol. 6(1), 179–218 (2022)
CrossRef Google scholar
[2]
Wu,H., Carvalho, P., Voeltz,G.K.: Here, there, and everywhere: the importance of ER membrane contact sites. Science 361(6401), eaan5835 (2018)
CrossRef Google scholar
[3]
Abrisch,R.G., Gumbin, S.C., Wisniewski,B.T., Lackner,L.L., Voeltz, G.K.: Fission and fusion machineries converge at ER contact sites to regulate mitochondrial morphology. J. Cell Biol. 219, e201911122 (2020)
CrossRef Google scholar
[4]
Chang,X., Li,Y., Cai,C., Wu, F., He,J., Zhang,Y., Zhong,J., Tan,Y., Liu, R., Zhu,H., Zhou,H.: Mitochondrial quality control mechanisms as molecular targets in diabetic heart. Metabolism 137, 155313 (2022)
CrossRef Google scholar
[5]
Wong,Y.C., Ysselstein, D., Krainc,D.: Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis. Nature 554(7692), 382–386 (2018)
CrossRef Google scholar
[6]
Murphy,M.P., Hartley, R.C.: Mitochondria as a therapeutic target for common pathologies. Nat. Rev. Drug Discov. 17(12), 865–886 (2018)
CrossRef Google scholar
[7]
Prokop,A.: Cytoskeletal organization of axons in vertebrates and invertebrates. J. Cell Biol. 219(7), e201912081 (2020)
CrossRef Google scholar
[8]
Sleigh,J.N., Rossor, A.M., Fellows,A.D., Tosolini,A.P., Schiavo, G.: Axonal transport and neurological disease. Nat. Rev. Neurol. 15(12), 691–703 (2019)
CrossRef Google scholar
[9]
Shanmughapriya,S., Langford, D., Natarajaseenivasan,K.: Inter and intracellular mitochondrial trafficking in health and disease. Ageing Res. Rev. 62, 101128 (2020)
CrossRef Google scholar
[10]
Sahl,S.J., Hell,S.W., Jakobs,S.: Fluorescence nanoscopy in cell biology. Nat. Rev. Mol. Cell Biol. 18(11), 685–701 (2017)
CrossRef Google scholar
[11]
Uluç,K., Kujoth, G.C., Başkaya,M.K.: Operating microscopes: past, present, and future. Neurosurg. Focus 27(3), E4 (2009)
CrossRef Google scholar
[12]
Sigal,Y.M., Zhou,R., Zhuang,X.: Visualizing and discovering cellular structures with super-resolution microscopy. Science 361(6405), 880–887 (2018)
CrossRef Google scholar
[13]
Choquet,D., Sainlos, M., Sibarita,J.B.: Advanced imaging and labelling methods to decipher brain cell organization and function. Nat. Rev. Neurosci. 22(4), 237–255 (2021)
CrossRef Google scholar
[14]
Abbe,E.: Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Mikrosk. Anat. 9, 413 (1873)
CrossRef Google scholar
[15]
Fernández-Suárez,M., Ting,A.Y.: Fluorescent probes for superresolution imaging in living cells. Nat. Rev. Mol. Cell Biol. 9(12), 929–943 (2008)
CrossRef Google scholar
[16]
Xu,C.S., Pang,S., Shtengel,G., Müller, A., Ritter,A.T., Hoffman,H.K., Takemura, S.Y., Lu,Z., Pasolli,H.A., Iyer,N., Chung,J., Bennett, D., Weigel,A.V., Freeman,M., van Engelenburg, S.B., Walther,T.C., Farese,R.V. Jr., Lippincott-Schwartz, J., Mellman,I., Solimena,M., Hess,H.F.: An open-access volume electron microscopy atlas of whole cells and tissues. Nature 599(7883), 147–151 (2021)
CrossRef Google scholar
[17]
Li,W., Lu,J., Xiao,K., Zhou, M., Li,Y., Zhang,X., Li,Z., Gu,L., Xu, X., Guo,Q., Xu,T., Ji,W.: Integrated multimodality microscope for accurate and efficient target-guided cryolamellae preparation. Nat. Methods 20(2), 268–275 (2023)
CrossRef Google scholar
[18]
Hell,S.W., Wichmann, J.: Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19(11), 780 (1994)
CrossRef Google scholar
[19]
Klar,T.A., Jakobs, S., Dyba,M., Egner,A., Hell,S.W.: Fluo-rescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000)
CrossRef Google scholar
[20]
Gustafsson,M.G.: Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198(2), 82–87 (2000)
CrossRef Google scholar
[21]
Gustafsson,M.G.: Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005)
CrossRef Google scholar
[22]
Rust,M.J., Bates,M., Zhuang,X.: Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3(10), 793–796 (2006)
CrossRef Google scholar
[23]
Betzig,E., Patterson, G.H., Sougrat,R., Lindwasser,O.W., Olenych, S., Bonifacino,J.S., Davidson,M.W., Lippincott-Schwartz, J., Hess,H.F.: Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793), 1642–1645 (2006)
CrossRef Google scholar
[24]
Dean,K.M., Palmer, A.E.: Advances in fluorescence labeling strategies for dynamic cellular imaging. Nat. Chem. Biol. 10(7), 512–523 (2014)
CrossRef Google scholar
[25]
Specht,E.A., Braselmann, E., Palmer,A.E.: A critical and comparative review of fluorescent tools for live-cell imaging. Annu. Rev. Physiol. 79(1), 93–117 (2017)
CrossRef Google scholar
[26]
Chen,F., Liu,W., Li,H., Deng, T., Xing,B., Liu,F.: Rhodamine fluorophores for STED super-resolution biological imaging. Analysis & Sensing 2(3), e202100066 (2022)
CrossRef Google scholar
[27]
Grimm,J.B., Lavis,L.D.: Caveat fluorophore: an insiders’ guide to small-molecule fluorescent labels. Nat. Methods 19(2), 149–158 (2022)
CrossRef Google scholar
[28]
Kikuchi,K., Adair,L.D., Lin,J., New, E.J., Kaur,A.: Photochemical mechanisms of fluorophores employed in single-molecule localization microscopy. Angew. Chem. Int. Ed. 62(1), e202204745 (2023)
CrossRef Google scholar
[29]
van de Linde,S., Aufmkolk, S., Franke,C., Holm,T., Klein,T., Löschberger,A., Proppert,S., Wolter, S., Sauer,M.: Investigating cellular structures at the nanoscale with organic fluorophores. Chem. Biol. 20(1), 8–18 (2013)
CrossRef Google scholar
[30]
Heilemann,M.: Fluorescence microscopy beyond the diffraction limit. J. Biotechnol. 149(4), 243–251 (2010)
CrossRef Google scholar
[31]
Heintzmann,R., Huser,T.: Super-resolution structured illumination microscopy. Chem. Rev. 117(23), 13890–13908 (2017)
CrossRef Google scholar
[32]
Li,D., Shao,L., Chen,B.C., Zhang, X., Zhang,M., Moses,B., Milkie, D.E., Beach,J.R., Hammer,J.A. III., Pasham, M., Kirchhausen,T., Baird,M.A., Davidson, M.W., Xu,P., Betzig,E.: Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349(6251), aab3500 (2015)
CrossRef Google scholar
[33]
Zhao,W., Zhao,S., Li,L., Huang, X., Xing,S., Zhang,Y., Qiu,G., Han,Z., Shang, Y., Sun,D.E., Shan,C., Wu,R., Gu,L., Zhang, S., Chen,R., Xiao,J., Mo,Y., Wang,J., Ji, W., Chen,X., Ding,B., Liu,Y., Mao,H., Song, B.L., Tan,J., Liu,J., Li,H., Chen,L.: Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy. Nat. Biotechnol. 40(4), 606–617 (2022)
CrossRef Google scholar
[34]
Lukinavičius,G., Reymond, L., D’Este,E., Masharina,A., Göttfert, F., Ta,H., Güther,A., Fournier, M., Rizzo,S., Waldmann,H., Blaukopf, C., Sommer,C., Gerlich,D.W., Arndt,H.D., Hell,S.W., Johnsson, K.: Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat. Methods 11(7), 731–733 (2014)
CrossRef Google scholar
[35]
Lukinavičius,G., Blaukopf, C., Pershagen,E., Schena,A., Reymond, L., Derivery,E., Gonzalez-Gaitan,M., D’Este, E., Hell,S.W., Gerlich,D.W., Johnsson, K.: SiR–Hoechst is a far-red DNA stain for live-cell nanoscopy. Nat. Commun. 6(1), 8497 (2015)
CrossRef Google scholar
[36]
Fan,F., Nie,S., Yang,D., Luo, M., Shi,H., Zhang,Y.H.: Labeling lysosomes and tracking lysosome-dependent apoptosis with a cell-permeable activity-based probe. Bioconjug. Chem. 23(6), 1309–1317 (2012)
CrossRef Google scholar
[37]
Zielonka,J., Joseph, J., Sikora,A., Hardy,M., Ouari,O., Vasquez-Vivar,J., Cheng,G., Lopez,M., Kalyanaraman,B.: Mitochondria-targeted triphenylphosphonium-based compounds: syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem. Rev. 117(15), 10043–10120 (2017)
CrossRef Google scholar
[38]
Aryal,S.P., Xia,M., Adindu,E., Davis, C., Ortinski,P.I., Richards,C.I.: ER-GCaMP6f: an endoplasmic reticulum-targeted genetic probe to measure calcium activity in astrocytic processes. Anal. Chem. 94(4), 2099–2108 (2022)
CrossRef Google scholar
[39]
Lukinavičius,G., Mitronova, G.Y., Schnorrenberg,S., Butkevich,A.N., Barthel, H., Belov,V.N., Hell,S.W.: Fluorescent dyes and probes for super-resolution microscopy of microtubules and tracheoles in living cells and tissues. Chem. Sci. (Camb.) 9(13), 3324–3334 (2018)
CrossRef Google scholar
[40]
Gerasimaitė,R., Seikowski, J., Schimpfhauser,J., Kostiuk,G., Gilat,T., D’Este,E., Schnorrenberg,S., Lukinavičius, G.: Efflux pump insensitive rhodamine-jasplakinolide conjugates for G-and F-actin imaging in living cells. Org. Biomol. Chem. 18(15), 2929–2937 (2020)
CrossRef Google scholar
[41]
Takagi,T., Ueno,T., Ikawa,K., Asanuma, D., Nomura,Y., Uno,S.N., Komatsu, T., Kamiya,M., Hanaoka,K., Okimura, C., Iwadate,Y., Hirose,K., Nagano, T., Sugimura,K., Urano,Y.: Discovery of an F-actin-binding small molecule serving as a fluorescent probe and a scaffold for functional probes. Sci. Adv. 19(47), eabg8585 (2021)
CrossRef Google scholar
[42]
Keppler,A., Gendreizig, S., Gronemeyer,T., Pick,H., Vogel,H., Johnsson,K.: A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21(1), 86–89 (2003)
CrossRef Google scholar
[43]
Gautier,A., Juillerat, A., Heinis,C., Corrêa,I.R. Jr., Kindermann, M., Beaufils,F., Johnsson,K.: An engineered protein tag for multiprotein labeling in living cells. Chem. Biol. 15(2), 128–136 (2008)
CrossRef Google scholar
[44]
Holtmannspötter,M., Wienbeuker,E., Dellmann, T., Watrinet,I., Garcia-Sáez,A.J., Johnsson,K., Kurre,R., Piehler,J.: Reversible live-cell labeling with retro-engineered HaloTags enables long-term high- and super-resolution imaging. Angew. Chem. Int. Ed. 62(18), e202219050 (2023)
CrossRef Google scholar
[45]
Wilhelm,J., Kühn, S., Tarnawski,M., Gotthard,G., Tünnermann, J., Tänzer,T., Karpenko,J., Mertes, N., Xue,L., Uhrig,U., Reinstein, J., Hiblot,J., Johnsson,K.: Kinetic and structural characterization of the self-labeling protein tags HaloTag7, SNAP-tag, and CLIP-tag. Biochemistry 60(33), 2560–2575 (2021)
CrossRef Google scholar
[46]
Mo,J., Chen,J., Shi,Y., Sun, J., Wu,Y., Liu,T., Zhang,J., Zheng,Y., Li, Y., Chen,Z.: Third-generation covalent TMP-Tag for fast labeling and multiplexed imaging of cellular proteins. Angew. Chem. Int. Ed. 61(36), e202207905 (2022)
CrossRef Google scholar
[47]
Uno,S.N., Kamiya, M., Yoshihara,T., Sugawara,K., Okabe,K., Tarhan,M.C., Fujita, H., Funatsu,T., Okada,Y., Tobita, S., Urano,Y.: A spontaneously blinking fluorophore based on intra-molecular spirocyclization for live-cell super-resolution imaging. Nat. Chem. 6(8), 681–689 (2014)
CrossRef Google scholar
[48]
Macdonald,P.J., Gayda,S., Haack,R.A., Ruan, Q., Himmelsbach,R.J., Tetin,S.Y.: Rhodamine-derived fluorescent dye with inherent blinking behavior for super-resolution imaging. Anal. Chem. 90(15), 9165–9173 (2018)
CrossRef Google scholar
[49]
Tang,J., Robichaux, M.A., Wu,K.L., Pei,J., Nguyen, N.T., Zhou,Y., Wensel,T.G., Xiao,H.: Single-atom fluorescence switch: a general approach toward visible-light-activated dyes for biological imaging. J. Am. Chem. Soc. 141(37), 14699–14706 (2019)
CrossRef Google scholar
[50]
Grimm,J.B., English, B.P., Chen,J., Slaughter,J.P., Zhang,Z., Revyakin,A., Patel, R., Macklin,J.J., Normanno,D., Singer, R.H., Lionnet,T., Lavis,L.D.: A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods 12(3), 244–250 (2015)
CrossRef Google scholar
[51]
Grimm,J.B., Muthusamy, A.K., Liang,Y., Brown,T.A., Lemon,W.C., Patel,R., Lu, R., Macklin,J.J., Keller,P.J., Ji,N., Lavis,L.D.: A general method to fine-tune fluorophores for live-cell and in vivo imaging. Nat. Methods 14(10), 987–994 (2017)
CrossRef Google scholar
[52]
Grimm,J.B., Tkachuk, A.N., Xie,L., Choi,H., Mohar,B., Falco,N., Schaefer, K., Patel,R., Zheng,Q., Liu,Z., Lippincott-Schwartz,J., Brown,T.A., Lavis,L.D.: A general method to optimize and functionalize red-shifted rhodamine dyes. Nat. Methods 17(8), 815–821 (2020)
CrossRef Google scholar
[53]
Zheng,Q., Ayala,A.X., Chung,I., Weigel, A.V., Ranjan,A., Falco,N., Grimm,J.B., Tkachuk,A.N., Wu,C., Lippincott-Schwartz, J., Singer,R.H., Lavis,L.D.: Rational design of fluorogenic and spontaneously blinking labels for super-resolution imaging. ACS Cent. Sci. 5(9), 1602–1613 (2019)
CrossRef Google scholar
[54]
Chi,W., Qi,Q., Lee,R., Xu, Z., Liu,X.: A unified push–pull model for understanding the ring-opening mechanism of rhodamine dyes. J. Phys. Chem. C 124(6), 3793–3801 (2020)
CrossRef Google scholar
[55]
Chi,Q., Qiao,Q., Wang,C., Zheng, J., Zhou,W., Xu,N., Wu,X., Jiang,X., Tan, D., Xu,Z., Liu,X.: Descriptor ΔGC-O enables the quantitative design of spontaneously blinking rhodamines for live-cell super-resolution imaging. Angew. Chem. 132(45), 20390–20398 (2020)
CrossRef Google scholar
[56]
Tyson,K., Hu,K., Zheng,S., Kidd, P., Dadina,N., Chu,L., Toomre, D., Bewersdorf,J., Schepartz,A.: Extremely bright, near-IR emitting spontaneously blinking fluorophores enable ratiometric multicolor nanoscopy in live cells. ACS Cent. Sci. 7(8), 1419–1426 (2021)
CrossRef Google scholar
[57]
Wang,L., Wang,S., Tang,J., Espinoza, V.B., Loredo,A., Tian,Z., Weisman, R.B., Xiao,H.: Oxime as a general photocage for the design of visible light photo-activatable fluorophores. Chem. Sci. (Camb.) 12(47), 15572–15580 (2021)
CrossRef Google scholar
[58]
Zheng,Y., Ye,Z., Zhang,X., Xiao, Y.: Recruiting rate determines the blinking propensity of rhodamine fluorophores for super-resolution imaging. J. Am. Chem. Soc. 145(9), 5125–5133 (2023)
CrossRef Google scholar
[59]
Zheng,Y., Ye,Z., Xiao,Y.: Subtle structural translation magically modulates the super-resolution imaging of self-blinking rhodamines. Anal. Chem. 95(8), 4172–4179 (2023)
CrossRef Google scholar
[60]
Bond,C., Santiago-Ruiz, A.N., Tang,Q., Lakadamyali,M.: Technological advances in super-resolution microscopy to study cellular processes. Mol. Cell 82(2), 315–332 (2022)
CrossRef Google scholar
[61]
Vicidomini,G., Moneron, G., Han,K.Y., Westphal,V., Ta,H., Reuss,M., Engelhardt, J., Eggeling,C., Hell,S.W.: Sharper low-power STED nanoscopy by time gating. Nat. Methods 8(7), 571–573 (2011)
CrossRef Google scholar
[62]
Willig,K.I., Harke,B., Medda,R., Hell, S.W.: STED microscopy with continuous wave beams. Nat. Methods 4(11), 915–918 (2007)
CrossRef Google scholar
[63]
Wurm,C.A., Kolmakov, K., Göttfert,F., Ta,H., Bossi,M., Schill,H., Schill, H., Berning,S., Jakobs,S., Donnert, G., Belov,V.N., Hell,S.W.: Novel red fluorophores with superior performance in STED microscopy. Opt. Nanoscopy 1(1), 1 (2012)
CrossRef Google scholar
[64]
Bückers,J., Wildanger, D., Vicidomini,G., Kastrup,L., Hell,S.W.: Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses. Opt. Express 19(4), 3130 (2011)
CrossRef Google scholar
[65]
Hua,Y., Sinha,R., Thiel,C.S., Schmidt, R., Hüve,J., Martens,H., Hell,S.W., Egner,A., Klingauf, J.: A readily retrievable pool of synaptic vesicles. Nat. Neurosci. 14(7), 833–839 (2011)
CrossRef Google scholar
[66]
Lukinavičius,G., Umezawa, K., Olivier,N., Honigmann,A., Yang,G., Plass,T., Mueller, V., Reymond,L., Corrêa,I.R. Jr., Luo, Z.G., Schultz,C., Lemke,E.A., Heppenstall, P., Eggeling,C., Manley,S., Johnsson, K.: A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat. Chem. 5(2), 132–139 (2013)
CrossRef Google scholar
[67]
Bottanelli,F., Kromann, E.B., Allgeyer,E.S., Erdmann,R.S., Wood Baguley, S., Sirinakis,G., Schepartz,A., Baddeley, D., Toomre,D.K., Rothman,J.E., Bewersdorf, J.: Two-colour live-cell nanoscale imaging of intracellular targets. Nat. Commun. 7(1), 10778 (2016)
CrossRef Google scholar
[68]
Butkevich,A.N., Mitronova, G.Y., Sidenstein,S.C., Klocke,J.L., Kamin,D., Meineke,D.N., D’Este,E., Kraemer, P.T., Danzl,J.G., Belov,V.N., Hell,S.W.: Fluorescent rhodamines and fluorogenic carbopyronines for super-resolution STED microscopy in living cells. Angew. Chem. Int. Ed. 55(10), 3290–3294 (2016)
CrossRef Google scholar
[69]
Lukinavičius,G., Reymond, L., Umezawa,K., Sallin,O., D’Este, E., Göttfert,F., Ta,H., Hell,S.W., Urano,Y., Johnsson, K.: Fluorogenic probes for multicolor imaging in living cells. J. Am. Chem. Soc. 138(30), 9365–9368 (2016)
CrossRef Google scholar
[70]
Wang,L., Tran,M., D’Este,E., Roberti,J., Koch,B., Xue,L., Johnsson, K.: A general strategy to develop cell permeable and fluorogenic probes for multicolour nanoscopy. Nat. Chem. 12(2), 165–172 (2020)
CrossRef Google scholar
[71]
Kompa,J., Bruins, J., Glogger,M., Wilhelm,J., Frei,M.S., Tarnawski,M., D’Este,E., Heilemann, M., Hiblot,J., Johnsson,K.: Exchangeable HaloTag ligands for super-resolution fluorescence microscopy. J. Am. Chem. Soc. 145(5), 3075–3083 (2023)
CrossRef Google scholar
[72]
Bucevičius,J., Kostiuk, G., Gerasimaitė,R., Gilat,T., Lukinavičius, G.: Enhancing the biocompatibility of rhodamine fluorescent probes by a neighbouring group effect. Chem. Sci. (Camb.) 11(28), 7313–7323 (2020)
CrossRef Google scholar
[73]
Lincoln,R., Bossi,M.L., Remmel,M., D’Este, E., Butkevich,A.N., Hell,S.W.: A general design of caging-group-free photoactivatable fluorophores for live-cell nanoscopy. Nat. Chem. 14(9), 1013–1020 (2022)
CrossRef Google scholar
[74]
Yang,Z., Kang,D.H., Lee,H., Shin, J., Yan,W., Rathore,B., Kim,H.R., Kim,S.J., Singh, H., Liu,L., Qu,J., Kang,C., Kim,J.S.: A fluorescent probe for stimulated emission depletion super-resolution imaging of vicinal-dithiol-proteins on mitochondrial membrane. Bioconjug, Chem. 29(4), 1446–1453 (2018)
CrossRef Google scholar
[75]
Wang,C., Taki,M., Sato,Y., Tamura, Y., Yaginuma,H., Okada,Y., Yamaguchi, S.: A photostable fluorescent marker for the super-resolution live imaging of the dynamic structure of the mitochondrial cristae. Proc. Natl. Acad. Sci. U.S.A. 116(32), 15817–15822 (2019)
CrossRef Google scholar
[76]
Zhu,F., Yang,Z., Wang,F., Li, D., Cao,H., Tian,Y., Tian,X.: 4-Dimensional observation ER-mitochondria interaction in living cells under nanoscopy by a stable pyridium salt as biosensor. Sens. Actuators B Chem. 305, 127492 (2020)
CrossRef Google scholar
[77]
Yang,X., Yang,Z., Wu,Z., He, Y., Shan,C., Chai,P., Ma,C., Tian,M., Teng, J., Jin,D., Yan,W., Das,P., Qu,J., Xi, P.: Mitochondrial dynamics quantitatively revealed by STED nanoscopy with an enhanced squaraine variant probe. Nat. Commun. 11(1), 3699 (2020)
CrossRef Google scholar
[78]
Wen,S., Li,S., Wang,L., Chen, X., Sun,Z., Liang,Y., Jin,X., Xing,Y., Jiu, Y., Tang,Y., Li,H.: High-fidelity structured illumination microscopy by point-spread-function engineering. Light Sci. Appl. 10(1), 70 (2021)
CrossRef Google scholar
[79]
Wen,G., Li,S., Liang,Y., Wang, L., Zhang,J., Chen,X., Jin,X., Chen,C., Tang, Y., Li,H.: Spectrum-optimized direct image reconstruction of super-resolution structured illumination microscopy. PhotoniX 4(1), 19 (2023)
CrossRef Google scholar
[80]
Huang,X., Fan,J., Li,L., Liu, H., Wu,R., Wu,Y., Wei,L., Mao,H., Lal, A., Xi,P., Tang,L., Zhang,Y., Liu,Y., Tan, S., Chen,L.: Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. Nat. Biotechnol. 36(5), 451–459 (2018)
CrossRef Google scholar
[81]
Guo,Y., Li,D., Zhang,S., Yang, Y., Liu,J., Wang,X., Liu,C., Milkie,D.E., Moore, R.P., Tulu,U.S., Kiehart,D.P., Hu,J., Lippincott-Schwartz,J., Betzig,E., Li,D.: Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell 175(5), 1430-1442.e17 (2018)
CrossRef Google scholar
[82]
Panchuk-Voloshina,N., Haugland, R.P., Bishop-Stewart,J., Bhalgat,M.K., Millard, P.J., Mao,F., Leung,W.Y., Haugland, R.P.: Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J. Histochem. Cytochem. 47(9), 1179–1188 (1999)
CrossRef Google scholar
[83]
Jimenez,A., Friedl, K., Leterrier,C.: About samples, giving examples: optimized single molecule localization microscopy. Methods 174, 100–114 (2020)
CrossRef Google scholar
[84]
Oleksiievets,N., Mathew, C., Thiele,J.C., Gallea,J.I., Nevskyi, O., Gregor,I., Weber,A., Tsukanov, R., Enderlein,J.: Single-molecule fluorescence lifetime imaging using wide-field and confocallaser scanning microscopy: a comparative analysis. Nano Lett. 22(15), 6454–6461 (2022)
CrossRef Google scholar
[85]
Wegel,E., Göhler, A., Lagerholm,B.C., Wainman,A., Uphoff, S., Kaufmann,R., Dobbie,I.M.: Imaging cellular structures in super-resolution with SIM, STED and localisation microscopy: a practical comparison. Sci. Rep. 6(1), 27290 (2016)
CrossRef Google scholar
[86]
Wäldchen,F., Schlegel, J., Götz,R., Luciano,M., Schnermann, M., Doose,S., Sauer,M.: Whole-cell imaging of plasma membrane receptors by 3D lattice light-sheet dSTORM. Nat. Commun. 11(1), 887 (2020)
CrossRef Google scholar
[87]
Zelger,P., Bodner, L., Offterdinger,M., Velas,L., Schütz, G.J., Jesacher,A.: Three-dimensional single molecule localization close to the coverslip: a comparison of methods exploiting super-critical angle fluorescence. Biomed. Opt. Express 12(2), 802 (2021)
CrossRef Google scholar
[88]
Jones,A., Shim,S.H., He,J., Zhuang, X.: Fast, three-dimensional super-resolution imaging of live cells. Nat. Methods 8(6), 499–505 (2011)
CrossRef Google scholar
[89]
Ma,Y., Gong,C., Ma,Y., Fan, F., Luo,M., Yang,F., Zhang,Y.H.: Direct cytosolic delivery of cargoes in vivo by a chimera consisting of D- and L-arginine residues. J. Control. Release 162(2), 286–294 (2012)
CrossRef Google scholar
[90]
Pan,D., Hu,Z., Qiu,F., Huang, Z.L., Ma,Y., Wang,Y., Qin,L., Zhang,Z., Zeng, S., Zhang,Y.H.: A general strategy for developing cell-permeable photo-modulatable organic fluorescent probes for live-cell super-resolution imaging. Nat. Commun. 5(1), 55573 (2014)
CrossRef Google scholar
[91]
Hennig,S., van de Linde, S., Lummer,M., Simonis,M., Huser,T., Sauer,M.: Instant live-cell super-resolution imaging of cellular structures by nanoinjection of fluorescent probes. Nano Lett. 15(2), 1374–1381 (2015)
CrossRef Google scholar
[92]
Liu,J., Fraire, J.C., De Smedt,S.C., Xiong,R., Braeckmans, K.: Intracellular labeling with extrinsic probes: delivery strategies and applications. Small 16(22), e2000146 (2020)
CrossRef Google scholar
[93]
Han,Y., Li,M., Qiu,F., Zhang, M., Zhang,Y.H.: Cell-permeable organic fluorescent probes for live-cell long-term super-resolution imaging reveal lysosome-mitochondrion interactions. Nat. Commun. 8(1), 1307 (2017)
CrossRef Google scholar
[94]
Zhang,M., Li,M., Zhang,W., Han, Y., Zhang,Y.H.: Simple and efficient delivery of cell-impermeable organic fluorescent probes into live cells for live-cell superresolution imaging. Light Sci. Appl 8(1), 73 (2019)
CrossRef Google scholar
[95]
Zhao,Y., Zhang,M., Zhang,W., Zhou, Y., Chen,L., Liu,Q., Wang,P., Chen,R., Duan, X., Chen,F., Deng,H., Wei,Y., Fei,P., Zhang, Y.H.: Isotropic super-resolution light-sheet microscopy of dynamic intracellular structures at subsecond timescales. Nat. Methods 19(3), 359–369 (2022)
CrossRef Google scholar
[96]
Kim,D., Stoldt, S., Weber,M., Jakobs,S., Belov,V.N., Hell,S.W.: A bright surprise: live-cell labeling with negatively charged fluorescent probes based on disulfonated rhodamines and HaloTag. Chem. Methods 3(9), 202200076 (2023)
CrossRef Google scholar
[97]
Qiao,D., Li,D., Liu,Y., Zhang, S., Liu,K., Liu,C., Guo,Y., Jiang,T., Fang, C., Li,N., Zeng,Y., He,K., Zhu,X., Lippincott-Schwartz, J., Dai,Q., Li,D.: Rationalized deep learning super-resolution microscopy for sustained live imaging of rapid subcellular processes. Nat. Biotechnol. 41(3), 367–377 (2023)
CrossRef Google scholar
[98]
Hao,X., Allgeyer, E.S., Lee,D.R., Antonello,J., Watters, K., Gerdes,J.A., Schroeder,L.K., Bottanelli, F., Zhao,J., Kidd,P., Lessard, M.D., Rothman,J.E., Cooley,L., Biederer, T., Booth,M.J., Bewersdorf,J.: Three-dimensional adaptive optical nanoscopy for thick specimen imaging at sub-50-nm resolution. Nat. Methods 18(6), 688–693 (2021)
CrossRef Google scholar
[99]
Bodén,F., Pennacchietti, F., Coceano,G., Damenti,M., Ratz,M., Testa,I.: Volumetric live cell imaging with three-dimensional parallelized RESOLFT microscopy. Nat. Biotechnol. 39(5), 609–618 (2021)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 The Author(s) 2023
AI Summary AI Mindmap
PDF(3288 KB)

Accesses

Citations

Detail

Sections
Recommended

/