Study on the performance of thin-film VCSELs on composite metal substrate

William Anderson Lee Sanchez, Shreekant Sinha, Po-Yu Wang, Ray-Hua Horng

PDF(1506 KB)
PDF(1506 KB)
Front. Optoelectron. ›› 2023, Vol. 16 ›› Issue (4) : 32. DOI: 10.1007/s12200-023-00086-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Study on the performance of thin-film VCSELs on composite metal substrate

Author information +
History +

Abstract

Thin film p-side up vertical-cavity surface-emitting lasers (VCSELs) with 940 nm wavelength on a composite metal (Copper/Invar/Copper; CIC) substrate has been demonstrated by twice-bonding transfer and substrate removing techniques. The CIC substrate is a sandwich structure with a 10 µm thick Copper (Cu) layer/30 µm thick Invar layer/10 µm thick Cu layer. The Invar layer was composed of Iron (Fe) and Nickel (Ni) with a proportion of 70:30. The thermal expansion coefficient of the composite CIC metal can match that of the GaAs substrate. It results that the VCSEL layers can be successfully transferred to CIC metal substrate without cracking. At 1 mA current, the top-emitting VCSEL/GaAs and thin-film VCSEL/CIC had a voltage of 1.39 and 1.37 V, respectively. The optical output powers of VCSEL/GaAs and VCSEL/CIC were 21.91 and 24.40 mW, respectively. The 50 µm thick CIC substrate can play a good heat dissipation function, which results in improving the electrical and optical characteristics of thin film VCSELs/CIC. The VCSEL/CIC exhibited a superior thermal management capability as compared with VCSEL/GaAs. The obtained data suggested that VCSELs on a composite metal substrate not only affected significantly the characteristics of thin film VCSEL, but also improved considerably the device thermal performance.

Graphical abstract

Keywords

Thin film / VCSELs / GaAs substrate / Composite metal / CIC substrate / Twice-bonding transfer / Electrical properties / Heat dissipation

Cite this article

Download citation ▾
William Anderson Lee Sanchez, Shreekant Sinha, Po-Yu Wang, Ray-Hua Horng. Study on the performance of thin-film VCSELs on composite metal substrate. Front. Optoelectron., 2023, 16(4): 32 https://doi.org/10.1007/s12200-023-00086-z

References

[1]
Pan,P.C., Nag,D., Khan,Z., Chen, C.J., Shi,J.W., Laha,A., Horng,R.H.: Effect of thermal management on the performance of VCSELs. IEEE Trans. Electron Devices 67(9), 3736–3739 (2020)
CrossRef Google scholar
[2]
Grabherr,M., Moench, H., Pruijmboom,A.: VCSELs. Springer Ser. Opt. Sci. 166, 521–538 (2013)
CrossRef Google scholar
[3]
Mateus,C.F.R., Huang,C.J., Chang-Hasnain,C.J., Foley,J.E., Beatty, R., Li,P., Cunningham,B.T.: Ultra-sensitive immunoassay using VCSEL detection system. Electron. Lett. 40(11), 649–651 (2004)
CrossRef Google scholar
[4]
Mateus,C.F.R., Huang,M.C., Foley,J., Beatty, P.R., Li,P., Cunningham,B.T., Chang-Hasnain, C.J.: Ultracompact high-sensitivity label-free biosensor using VCSEL. Proc. SPIE 5328, 140–146 (2004)
CrossRef Google scholar
[5]
Plant,D.V., Trezza, J.A., Venditti,M.B., Laprise,E., Faucher, J., Razavi,K., Chateauneuf,M., Kirk,A.G., Luo,W.: 256-channel bidirectional optical interconnect using VCSELs and photodiodes on CMOS. Proc. SPIE 4089, 1046–1054 (2000)
CrossRef Google scholar
[6]
Mukoyama,N., Otoma,H., Sakurai,J., Ueki, N., Nakayama,H.: VCSEL array-based light exposure system for laser printing. Proc. SPIEE 6908, 146–156 (2008)
CrossRef Google scholar
[7]
Westbergh,P., Gustavsson, J.S., Haglund,Å., Skold,M., Joel,A., Larsson,A.: High-speed, low-current-density 850 nm VCSELs. IEEE J. Sel. Top. Quantum Electron. 15(3), 694–703 (2009)
CrossRef Google scholar
[8]
Al-Omari,A.N., Alias,M.S., Ababneh,A., Lear, K.L.: Improved performance of top-emitting oxide-confined polyimide-planarized 980 nm VCSELs with copper-plated heat sinks. J. Phys. D Appl. Phys. 45(50), 50510-1–50510-18 (2012)
CrossRef Google scholar
[9]
Shih,T.T., Chi,Y.C., Wang,R.N., Wu, C.H., Huang,J.J., Jou,J.J., Lee,T.C., Kuo,H.C., Lin, G.R., Cheng,W.H.: Efficient heat dissipation of uncooled 400-Gbps (16 × 25-Gbps) optical transceiver employing multimode VCSEL and PD arrays. Sci. Rep. 7(1), 1–10 (2017)
CrossRef Google scholar
[10]
Robertson,J., Hejda,M., Bueno,J., Hurtado, A.: Ultrafast optical integration and pattern classification for neuromorphic photonics based on spiking VCSEL neurons. Sci. Rep. 10(1), 1–8 (2020)
CrossRef Google scholar
[11]
Sheng,X., Robert, C., Wang,S., Pakeltis,G., Corbett, B., Rogers,J.A.: Transfer printing of fully formed thin-film microscale GaAs lasers on silicon with a thermally conductive interface material. Laser Photonics Rev. 9(4), L17–L22 (2015)
CrossRef Google scholar
[12]
Vega-Flick,A., Jung,D., Yue,S., Bowers, J.E., Liao,B.: Reduced thermal conductivity of epitaxial GaAs on Si due to symmetry-breaking biaxial strain. Phys. Rev. Mater. 3(3), 034603-1–034603-9 (2019)
CrossRef Google scholar
[13]
Nadri,S., Moore,C.M., Sauber,N.D., Xie, L., Cyberey,M.E., Gaskins,J.T., Lichtenberger, A.W., Barker,N.S., Hopkins,P.E., Zebarjadi, M., Weikle,R.M.: Thermal characterization of quasi-vertical GaAs Schottky diodes integrated on silicon. IEEE Trans. Electron Devices 66(1), 349–356 (2018)
CrossRef Google scholar
[14]
Nie,Q., Chen,G., Wang,B., Yang, L., Tang,W.: Process optimization, microstructures and mechanical/thermal properties of Cu/Invar bi-metal matrix composites fabricated by spark plasma sintering. Trans. Nonferrous Met. Soc. China 31(10), 3050–3062 (2021)
CrossRef Google scholar
[15]
Jha,S.: CUVAR-a new controlled expansion, high conductivity material for electronic thermal management. IEEE 45th Electronic Components and Technology Conference, 542–547 (1995).
[16]
Nie,Q., Wang,B., Zhang,J., Tang, W.: Fabrication of the Agcoated Invar/Cu bimetal matrix composites through spark plasma sintering: An investigation on microstructure and properties. Mater. Lett. 321, 132440 (2022)
CrossRef Google scholar
[17]
Nie,Q.Q., Chen,G.H., Wang,B., Yang, L., Zhang,J.H., Tang,W.M.: Effect of Invar particle size on microstructures and properties of the Cu/Invar bi-metal matrix composites fabricated by SPS. J. Alloys Compd. 891, 162055 (2022)
CrossRef Google scholar
[18]
Zweben,C.: Advances in composite materials for thermal management in electronic packaging. Jom 50, 47–51 (1998)
CrossRef Google scholar
[19]
Kuchta,D.M., Rylyakov, A.V., Schow,C.L., Proesel,J.E., Baks,C.W., Westbergh,P., Gustavsson,J.S., Larsson, A.: A 50 Gb/s NRZ modulated 850 nm VCSEL transmitter operating error free to 90 C. J. Lightw. Technol. 33(4), 802–810 (2015)
CrossRef Google scholar
[20]
Ledentsov,N., Agustin, M., Shchukin,V.A., Kropp,J.R., Ledentsov, N.N., Chorchos,Ł, Turkiewicz,J.P., Khan,Z., Cheng,C.L., Shi, J.W., Cherkashin,N.: Quantum dot 850 nm VCSELs with extreme high temperature stability operating at bit rates up to 25 Gbit/s at 150°C. Solid State Electron. 155, 150–158 (2019)
CrossRef Google scholar
[21]
Cheng,C.L., Ledentsov, N., Khan,Z., Yen,J.L., Ledentsov, N.N., Shi,J.W.: Ultrafast Zn-diffusion and oxide-relief 940 nm vertical-cavity surface-emitting lasers under high-temperature operation. IEEE J. Sel. Topics Quantum Electron. 25(6), 1700507-1–1700507-6 (2019)
CrossRef Google scholar
[22]
Moon,S., Yun,Y., Lee,M., Kim, D., Choi,W., Park,J.Y., Lee,J.: Top-emitting 940-nm thin-film VCSELs transferred onto aluminum heatsinks. Sci. Rep. 12(1), 1–7 (2022)
CrossRef Google scholar
[23]
Ouchi,T., Sato,T., Sakata,H.: Thin-film vertical-cavity surface-emitting lasers containing strained InGaAs quantum wells fabricated by substrate removal. Jpn. J. Appl. Phys. 40(9A), L937–L940 (2001)
CrossRef Google scholar
[24]
Weigl,B., Grabherr, M., Jung,C., Jager,R., Reiner, G., Michalzik,R., Sowada,D., Ebeling, K.J.: High-performance oxide-confined GaAs VCSELs. IEEE J. Sel. Top. Quantum Electron. 3(2), 409–415 (1997)
CrossRef Google scholar
[25]
Osinski,M., Nakwaski, W.: Thermal analysis of closely-packed two-dimensional etched-well surface-emitting laser arrays. IEEE J. Sel. Top. Quantum Electron. 1(2), 681–696 (1995)
CrossRef Google scholar
[26]
Choi,J.H., Wang,L., Bi,H., Chen, R.T.: Effects of thermal-via structures on thin-film VCSELs for fully embedded board-leveloptical interconnection system. IEEE J. Sel. Top. Quantum Electron. 12(5), 1060–1065 (2006)
CrossRef Google scholar
[27]
Hatakeyama,H., Anan,T., Akagawa,T., Fukatsu, K., Suzuki,N., Tokutome,K., Tsuji,M.: Highly reliable high-speed 1.1-µm-range VCSELs with InGaAs/GaAsP-MQWs. IEEE J. Quantum Electron. 46(6), 890–897 (2010)
CrossRef Google scholar
[28]
Choi,C., Lin,L., Liu,Y., Chen, R.T.: Performance analysis of 10-µm-thick VCSEL array in fully embedded board level guidedwave optoelectronic interconnects. J. Light. Technol. 21(6), 1531–1535 (2003)
CrossRef Google scholar
[29]
Al-Omari,A.N., Lear,K.L.: VCSELs with a self-aligned contact and copper-plated heatsink. IEEE Photonic Technol. Lett. 17(9), 1767–1769 (2005)
CrossRef Google scholar
[30]
Al-Omari,A.N., Carey,G.P., Hallstein,S., Watson,J.P., Dang,G., Lear,K.L.: Low thermal resistance high-speed top-emitting 980-nm VCSELs. IEEE Photonics Technol. Lett. 18(11), 1225–1227 (2006)
CrossRef Google scholar
[31]
Mathine,D.L., Nejad,H., Allee,D.R., Droopad, R., Maracas,G.N.: Reduction of the thermal impedance of vertical-cavity surface-emitting lasers after integration with copper substrates. Appl. Phys. Lett. 69(4), 463–464 (1996)
CrossRef Google scholar
[32]
Tian,S.C., Ahamed, M., Larisch,G., Bimberg,D.: Novel energy-efficient designs of vertical-cavity surface emitting lasers for the next generations of photonic systems. Jpn. J. Appl. Phys. J. Appl. Phys. 61(SK), SK0801 (2022)
CrossRef Google scholar
[33]
Tian,S.C., Mansoor, A., Bimberg,D.: Progress in energy-efficient high-speed vertical-cavity surface-emitting lasers for data communication. MDPI Photonics 10, 410 (2023)
CrossRef Google scholar
[34]
Horng,R.H., Sinha,S., Lee,C.P., Feng, H.A., Chung,C.Y., Tu,C.W.: Composite metal substrate for thin film AlGaInP LED applications. Opt. Express 27(8), A397–A403 (2019)
CrossRef Google scholar
[35]
Sinha,S., Feng,H., Chung,C., Tu, C., Horng,R.: Comparison of properties of thin film AlGaInP LEDs with composite metal and Si substrates. ECS J. Solid State Sci. Technol. 9(1), 015015-1–015015-5 (2019)
CrossRef Google scholar
[36]
Horng,R. H., Sinha,S., Feng,H. A., Chung, C. Y., Tu,C. W.: Novel composite substrates for thin film AlGaInP-based high power LEDs. In: IEEE 2019 Proceedings of Compound Semiconductor Week (CSW), pp 1–1 (2019)
CrossRef Google scholar
[37]
Horng,R.H., Wuu,D.S., Wei,S.C., Tseng, C.Y., Huang,M.F., Chang,K.H., Liu,P.H., Lin,K.C.: AlGaInP light-emitting diodes with mirror substrates fabricated by wafer bonding. Appl. Phys. Lett. 75(20), 3054–3056 (1999)
CrossRef Google scholar
[38]
Sinha,S., Tarntair, F., Ho,C., Wu,Y., Horng,R.H.: Investigation of electrical and optical properties of AlGaInP red vertical micro-light-emitting diodes with Cu/Invar/Cu metal substrates. IEEE Trans. Electron Devices 68(6), 2818–2822 (2021)
CrossRef Google scholar
[39]
Perera,I.U., Narendran, N., Liu,Y.: Accurate measurement of LED lens surface temperature. Proc. SPIE 8835, 27–32 (2013)
CrossRef Google scholar
[40]
Dai,S., Li,J., Lu,N.: Research progress of diamond/copper composites with high thermal conductivity. Diam. Relat. Mater.Relat. Mater. 108, 107993-1–1079931-5 (2020)
CrossRef Google scholar
[41]
Lee,S.H., Kwon,S.Y., Ham,H.J.: Thermal conductivity of tungsten–copper composites. Thermochim. Acta 542, 2–5 (2012)
CrossRef Google scholar
[42]
Deppe,D.G., Li,M., Yang,X., Bayat, M.: Advanced VCSEL technology: self-heating and intrinsic modulation response. IEEE J. Quantum Electron. 54(3), 1–9 (2018)
CrossRef Google scholar
[43]
Mogg,S., Chitica, N., Christiansson,U., Schatz,R., Sundgren, P., Asplund,C., Hammar,M.: Temperature sensitivity of the threshold current of long-wavelength InGaAs-GaAs VCSELs with large gain-cavity detuning. IEEE J. Quantum Electron. 40(5), 453–462 (2004)
CrossRef Google scholar
[44]
Filipchuk,A., Nechay, K., Ulkuniemi,R., Talmila,S., Uusimaa, P.: Thermal management optimization in high-power 3D sensing VCSELs. Proc. SPIE 11982, 84–89 (2022)
CrossRef Google scholar
[45]
Haglund,E.P., Kumari, S., Haglund,E., Gustavsson,J.S., Baets,R.G., Roelkens,G., Larsson, A.: Silicon-integrated hybrid-cavity 850-nm VCSELs by adhesive bonding: impact of bonding interface thickness on laser performance. IEEE J. Sel. Top. Quantum Electron. 23(6), 1–9 (2016)
CrossRef Google scholar
[46]
Fedorov,S.A., Beccari, A., Arabmoheghi,A., Wilson,D.J., Engelsen, N.J., Kippenberg,T.J.: Thermal intermodulation noise in cavity-based measurements. Optica 7(11), 1609–1616 (2020)
CrossRef Google scholar
[47]
Huang,S.Y., Horng,R.H., Shi,J.W., Kuo, H.C., Wuu,D.S.: High-performance InGaN-based green resonant-cavity light-emitting diodes for plastic optical fiber applications. J. Lightwave Technol. 27(18), 4084–4094 (2009)
CrossRef Google scholar
[48]
Huang,S.Y., Horng,R.H., Liu,P.L., Wu, J.Y., Wu,H.W., Wuu,D.S.: Thermal stability improvement of vertical conducting green resonant-cavity light-emitting diodes on copper substrates. IEEE Photonics Technol. Lett. 20(10), 797–799 (2008)
CrossRef Google scholar
[49]
Cho,J., Sone,C., Park,Y., Yoon, E.: Measuring the junction temperature of III-nitride light emitting diodes using electro-luminescence shift. Phys. Status Solidi A 202(9), 1869–1873 (2005)
CrossRef Google scholar
[50]
Gu,Y., Narendran, N.: A noncontact method for determining junction temperature of phosphor-converted white LEDs. In: Third international conference on solid state lighting, Proc. SPIE 5187, 107–114 (2004).
CrossRef Google scholar
[51]
Chen,X., Lim,J.S.K., Yan,W., Guo, F., Liang,Y.N., Chen,H., Lambourne, A., Hu,X.: Salt template assisted BN scaffold fabrication toward highly thermally conductive epoxy composites. ACS Appl. Mater. Interfaces 12(14), 16987–16996 (2020)
CrossRef Google scholar
[52]
Liu,L., Xiang,D., Wu,L.: Improved thermal conductivity of ceramic-epoxy composites by constructing vertically aligned nanoflower-like AlN network. Ceram. Int. 48(8), 10438–10446 (2022)
CrossRef Google scholar
[53]
Lee Sanchez,W.A., Li, J.W., Chiu,H.T., Cheng,C.C., Chiou,K.C., Lee,T.M., Chiu, C.W.: Highly thermally conductive epoxy composites with AlN/BN hybrid filler as underfill encapsulation material for electronic packaging. Polymers 14(14), 2950 (2022)
CrossRef Google scholar
[54]
Yan,R., Su,F., Zhang,L., Li, C.: Highly enhanced thermal conductivity of epoxy composites by constructing dense thermal conductive network with combination of alumina and carbon nanotubes. Compos. Part A Appl. Sci. 125, 105496 (2019)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 The Author(s) 2023
AI Summary AI Mindmap
PDF(1506 KB)

Accesses

Citations

Detail

Sections
Recommended

/