Revealing the interaction mechanism of pulsed laser processing with the application of acoustic emission

Weinan Liu, Youmin Rong, Ranwu Yang, Congyi Wu, Guojun Zhang, Yu Huang

PDF(1309 KB)
PDF(1309 KB)
Front. Optoelectron. ›› 2023, Vol. 16 ›› Issue (2) : 14. DOI: 10.1007/s12200-023-00070-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Revealing the interaction mechanism of pulsed laser processing with the application of acoustic emission

Author information +
History +

Abstract

The mechanisms of interaction between pulsed laser and materials are complex and indistinct, severely influencing the stability and quality of laser processing. This paper proposes an intelligent method based on the acoustic emission (AE) technique to monitor laser processing and explore the interaction mechanisms. The validation experiment is designed to perform nanosecond laser dotting on float glass. Processing parameters are set differently to generate various outcomes: ablated pits and irregular-shaped cracks. In the signal processing stage, we divide the AE signals into two bands, main and tail bands, according to the laser processing duration, to study the laser ablation and crack behavior, respectively. Characteristic parameters extracted by a method that combines framework and frame energy calculation of AE signals can effectively reveal the mechanisms of pulsed laser processing. The main band features evaluate the degree of laser ablation from the time and intensity scales, and the tail band characteristics demonstrate that the cracks occur after laser dotting. In addition, from the analysis of the parameters of the tail band very large cracks can be efficiently distinguished. The intelligent AE monitoring method was successfully applied in exploring the interaction mechanism of nanosecond laser dotting float glass and can be used in other pulsed laser processing fields.

Graphical abstract

Keywords

Laser dotting / Acoustic emission / Monitoring / Laser ablation / Cracks

Cite this article

Download citation ▾
Weinan Liu, Youmin Rong, Ranwu Yang, Congyi Wu, Guojun Zhang, Yu Huang. Revealing the interaction mechanism of pulsed laser processing with the application of acoustic emission. Front. Optoelectron., 2023, 16(2): 14 https://doi.org/10.1007/s12200-023-00070-7

References

[1]
Wang, H., Guo, L., Zhang, X., Dong, J., Lue, Q., Zhang, Q., Jiang, Q., Chen, T., Li, J.: Influence of processing parameters on the quality of titanium-coated glass welded by nanosecond pulse laser. Opt. Laser Technol. 144, 107411 (2021)
CrossRef Google scholar
[2]
Ferreira, P.H.D., Fabris, D.C.N., Villas Boas, M.O.C., Bezerra, I.G., Mendonça, C.R., Zanotto, E.D.: Transparent glass-ceramic waveguides made by femtosecond laser writing. Opt. Laser Technol. 136, 106742 (2021)
CrossRef Google scholar
[3]
Furumoto, T., Hashimoto, Y., Ogi, H., Kawabe, T., Yamaguchi, M., Koyano, T., Hosokawa, A.: CO2 laser cleavage of chemically strengthened glass. J. Mater. Process. Technol. 289, 116961 (2021)
CrossRef Google scholar
[4]
Meng, J., Yu, C., Li, S., Wei, C., Dai, S., Li, H., Li, J.: Microfluidics temperature compensating and monitoring based on liquid metal heat transfer. Micromachines (Basel) 13(5), 1–14 (2022)
CrossRef Google scholar
[5]
Xu, C., Wang, L., Li, D., Zhang, S., Chen, L., Yang, D.: Improving the solar cell module performance by a uniform porous antireflection layer on low iron solar glass. Appl. Phys. Express 6(3), 14–17 (2013)
CrossRef Google scholar
[6]
Cai, Y., Yang, L., Zhang, H., Wang, Y.: Laser cutting silicon-glass double layer wafer with laser induced thermal-crack propagation. Opt. Lasers Eng. 82, 173–185 (2016)
CrossRef Google scholar
[7]
Mishchik, K., Leger, C.J., Caulier, O.D., Skupin, S., Chimier, B., Hönninger, C., Kling, R., Duchateau, G., Lopez, J.: Ultrashort pulse laser cutting of glass by controlled fracture propagation. J. Laser Micro Nanoeng. 11(1), 66–70 (2016)
CrossRef Google scholar
[8]
Sun, M., Eppelt, U., Hartmann, C., Schulz, W., Zhu, J., Lin, Z.: Damage morphology and mechanism in ablation cutting of thin glass sheets with picosecond pulsed lasers. Opt. Laser Technol. 80, 227–236 (2016)
CrossRef Google scholar
[9]
Chiu, T.C., Hua, C.A., Wang, C.H., Chen, K.S., Yang, T.S., Wen, C.D., Li, C.H., Lin, M.C., Huang, C.J., Chen, K.T.: On the mechanics of laser peeling for ultra-thin glasses. Eng. Fract. Mech. 163, 236–247 (2016)
CrossRef Google scholar
[10]
Shin, J.: Investigation of the surface morphology in glass scribing with a UV picosecond laser. Opt. Laser Technol. 111, 307–314 (2019)
CrossRef Google scholar
[11]
Qin, R., Zhang, Z., Hu, Z., Du, Z., Xiang, X., Wen, G., He, W.: On-line evaluation and monitoring technology for material surface integrity in laser shock peening—a review. J. Mater. Process. Technol. 313, 117851 (2023)
CrossRef Google scholar
[12]
Luiz Lara Oliveira, T., Zitoune, R., Ancelotti, A.C., da Cunha, S.S.: Smart machining: monitoring of CFRP milling using AE and IR. Compos. Struct. 249, 112611 (2020)
CrossRef Google scholar
[13]
Chethan, Y.D., Ravindra, H.V., Krishnegowda, Y.T.: Optimization of machining parameters in turning Nimonic-75 using machine vision and acoustic emission signals by Taguchi technique. Measurement 144, 144–154 (2019)
CrossRef Google scholar
[14]
Tran, M.Q., Liu, M.K., Elsisi, M.: Effective multi-sensor data fusion for chatter detection in milling process. ISA Trans. 125, 514–527 (2022)
CrossRef Google scholar
[15]
Albert, G., Laheurte, R., K’Nevez, J.Y., Darnis, P., Cahuc, O.: Experimental milling moment model in orthogonal cutting condition: to an accurate energy balance. Int. J. Adv. Manuf. Technol. 55(9–12), 843–854 (2011)
CrossRef Google scholar
[16]
Kiss, A.K., Hajdu, D., Bachrathy, D., Stepan, G., Dombovari, Z.: In-process impulse response of milling to identify stability properties by signal processing. J. Sound Vibrat. 527, 116849 (2022)
CrossRef Google scholar
[17]
Twardowski, P., Tabaszewski, M., Wiciak-Pikuła, M., Felusiak-Czyryca, A.: Identification of tool wear using acoustic emission signal and machine learning methods. Precis. Eng. 72, 738–744 (2021)
CrossRef Google scholar
[18]
Wang, C., Bao, Z., Zhang, P., Ming, W., Chen, M.: Tool wear evaluation under minimum quantity lubrication by clustering energy of acoustic emission burst signals. Measurement 138, 256–265 (2019)
CrossRef Google scholar
[19]
Asadzadeh, M.Z., Eiböck, A., Gänser, H.P., Klünsner, T., Mücke, M., Hanna, L., Teppernegg, T., Treichler, M., Peissl, P., Czettl, C.: Tool damage state condition monitoring in milling processes based on the mechanistic model goodness-of-fit metrics. J. Manuf. Process. 80, 612–623 (2022)
CrossRef Google scholar
[20]
Yusof, M.F.M., Ishak, M., Ghazali, M.F.: Classification of weld penetration condition through synchrosqueezed-wavelet analysis of sound signal acquired from pulse mode laser welding process. J. Mater. Process. Technol. 279, 116559 (2020)
CrossRef Google scholar
[21]
Luo, Y., Zhu, L., Han, J., Xu, J., Zhang, C., Chen, D.: Effect of focusing condition on laser energy absorption characteristics in pulsed laser welding. Opt. Laser Technol. 117, 52–63 (2019)
CrossRef Google scholar
[22]
Shevchik, S., Le-Quang, T., Meylan, B., Farahani, F.V., Olbinado, M.P., Rack, A., Masinelli, G., Leinenbach, C., Wasmer, K.: Supervised deep learning for real-time quality monitoring of laser welding with X-ray radiographic guidance. Sci. Rep. 10(1), 3389 (2020)
CrossRef Google scholar
[23]
Luo, Y., Zhu, L., Han, J., Xie, X., Wan, R., Zhu, Y.: Study on the acoustic emission effect of plasma plume in pulsed laser welding. Mech. Syst. Signal Process. 124, 715–723 (2019)
CrossRef Google scholar
[24]
Asif, K., Zhang, L., Derrible, S., Indacochea, J.E., Ozevin, D., Ziebart, B.: Machine learning model to predict welding quality using air-coupled acoustic emission and weld inputs. J. Intell. Manuf. 33(3), 881–895 (2022)
CrossRef Google scholar
[25]
Yaacoubi, S., Dahmene, F., El Mountassir, M., Bouzenad, A.E.: A novel AE algorithm-based approach for the detection of cracks in spot welding in view of online monitoring: case study. Int. J. Adv. Manuf. Technol. 117(5–6), 1807–1824 (2021)
CrossRef Google scholar
[26]
Li, J., Zhou, Q., Cao, L., Wang, Y., Hu, J.: A convolutional neural network-based multi-sensor fusion approach for in-situ quality monitoring of selective laser melting. J. Manuf. Syst. 64, 429–442 (2022)
CrossRef Google scholar
[27]
Jafari-Marandi, R., Khanzadeh, M., Tian, W., Smith, B., Bian, L.: From in-situ monitoring toward high-throughput process control: cost-driven decision-making framework for laser-based additive manufacturing. J. Manuf. Syst. 51, 29–41 (2019)
CrossRef Google scholar
[28]
Kenda, M., Klobčar, D., Bračun, D.: Condition based maintenance of the two-beam laser welding in high volume manufacturing of piezoelectric pressure sensor. J. Manuf. Syst. 59, 117–126 (2021)
CrossRef Google scholar
[29]
Eschner, N., Weiser, L., Häfner, B., Lanza, G.: Classification of specimen density in laser powder bed fusion (L-PBF) using inprocess structure-borne acoustic process emissions. Addit. Manuf. 34, 101324 (2020)
CrossRef Google scholar
[30]
Li, K., Li, T., Ma, M., Wang, D., Deng, W., Lu, H.: Laser cladding state recognition and crack defect diagnosis by acoustic emission signal and neural network. Opt. Laser Technol. 142, 107161 (2021)
CrossRef Google scholar
[31]
Mojškerc, B., Ravnikar, D., Šturm, R.: Experimental characterisation of laser surface remelting via acoustic emission wavelet decomposition. J. Mater. Res. Technol. 15, 3365–3374 (2021)
CrossRef Google scholar
[32]
Ravnikar, D., Mojškerc, B., Šturm, R.: Investigation of laser surface remelting supported by acoustic emission analysis and machine learning. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 53(3), 837–849 (2022)
CrossRef Google scholar
[33]
Xie, X., Huang, Q., Long, J., Ren, Q., Hu, W., Liu, S.: A new monitoring method for metal rust removal states in pulsed laser derusting via acoustic emission techniques. J. Mater. Process. Technol. 275, 116321 (2020)
CrossRef Google scholar
[34]
Xie, X., Zhang, Y., Huang, Q., Huang, Y., Zhang, W., Zhang, J., Long, J.: Monitoring method for femtosecond laser modification of silicon carbide via acoustic emission techniques. J. Mater. Process. Technol. 290, 116990 (2021)
CrossRef Google scholar
[35]
Liu, W., Zhang, G., Huang, Y., Li, W., Rong, Y., Yang, R.: A novel monitoring method of nanosecond laser scribing float glass with acoustic emission. J. Intell. Manuf. 34(4), 1721–1729 (2023)
CrossRef Google scholar
[36]
Liu, W., Rong, Y., Fan, X., Xin, G., Huang, Y.: Crack growth analysis of ultraviolet nanosecond laser scanning glass with acoustic emission. Ultrasonics 132, 106997 (2023)
CrossRef Google scholar
[37]
Das, A.K., Lai, T.T., Chan, C.W., Leung, C.K.Y.: A new non-linear framework for localization of acoustic sources. Struct. Health Monit. 18(2), 590–601 (2019)
CrossRef Google scholar
[38]
Piñal-Moctezuma, F., Delgado-Prieto, M., Romeral-Martínez, L.: An acoustic emission activity detection method based on shortterm waveform features: application to metallic components under uniaxial tensile test. Mech. Syst. Signal Process. 142, 1–22 (2020)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 The Author(s) 2023
AI Summary AI Mindmap
PDF(1309 KB)

Accesses

Citations

Detail

Sections
Recommended

/