Two types of ultrafast mode-locking operations from an Er-doped fiber laser based on germanene nanosheets

Baohao Xu, Zhiyuan Jin, Lie Shi, Huanian Zhang, Qi Liu, Peng Qin, Kai Jiang, Jing Wang, Wenjing Tang, Wei Xia

PDF(2536 KB)
PDF(2536 KB)
Front. Optoelectron. ›› 2023, Vol. 16 ›› Issue (2) : 13. DOI: 10.1007/s12200-023-00068-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Two types of ultrafast mode-locking operations from an Er-doped fiber laser based on germanene nanosheets

Author information +
History +

Abstract

As a member of Xenes family, germanene has excellent nonlinear saturable absorption characteristics. In this work, we prepared germanene nanosheets by liquid phase exfoliation and measured their saturation intensity as 0.6 GW/cm2 with a modulation depth of 8%. Then, conventional solitons with a pulse width of 946 fs and high-energy noise-like pulses with a pulse width of 784 fs were obtained by using germanene nanosheet as a saturable absorber for a mode-locked Erbium-doped fiber laser. The characteristics of the two types of pulses were investigated experimentally. The results reveal that germanene has great potential for modulation devices in ultrafast lasers and can be used as a material for creation of excellent nonlinear optical devices to explore richer applications in ultrafast photonics.

Graphical abstract

Keywords

Fiber laser / Germanene / Mode-locked / Noise-like pluses

Cite this article

Download citation ▾
Baohao Xu, Zhiyuan Jin, Lie Shi, Huanian Zhang, Qi Liu, Peng Qin, Kai Jiang, Jing Wang, Wenjing Tang, Wei Xia. Two types of ultrafast mode-locking operations from an Er-doped fiber laser based on germanene nanosheets. Front. Optoelectron., 2023, 16(2): 13 https://doi.org/10.1007/s12200-023-00068-1

References

[1]
Keller, U.: Recent developments in compact ultrafast lasers. Nature 424(6950), 831–838 (2003)
CrossRef Google scholar
[2]
Phillips, K.C., Gandhi, H.H., Mazur, E., Sundaram, S.K.: Ultrafast laser processing of materials: a review. Adv. Opt. Photonics 7(4), 684–712 (2015)
CrossRef Google scholar
[3]
Kim, J., Song, Y.: Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications. Adv. Opt. Photonics 8(3), 465–540 (2016)
CrossRef Google scholar
[4]
Banerjee, A., Budker, D., Eby, J., Kim, H., Perez, G.: Relaxion stars and their detection via atomic physics. Commun. Phys. 3(1), 1–6 (2020)
CrossRef Google scholar
[5]
Wise, F.W., Chong, A., Renninger, W.H.: High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion. Laser Photonics Rev. 2(1–2), 58–73 (2008)
CrossRef Google scholar
[6]
Kurtner, F.X., Au, J.A., Keller, U.: Mode-locking with slow and fast saturable absorbers-what’s the difference? IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998)
CrossRef Google scholar
[7]
Xu, N., Wang, H., Zhang, H., Guo, L., Shang, X., Jiang, S., Li, D.: Palladium diselenide as a direct absorption saturable absorber for ultrafast mode-locked operations: from all anomalous dispersion to all normal dispersion. Nanophotonics 9(14), 4295–4306 (2020)
CrossRef Google scholar
[8]
Duan, L., Wang, H., Bai, J., Wang, Y., Wei, L., Chen, Z., Yu, J., Wen, J.: 844-fs mode-locked fiber laser by carboxyl-functionalized graphene oxide. Opt. Eng. 56(11), 1 (2017)
CrossRef Google scholar
[9]
Bao, Q., Zhang, H., Wang, Y., Ni, Z., Yan, Y., Shen, Z., Loh, K., Tang, D.: Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 19(19), 3077–3083 (2009)
CrossRef Google scholar
[10]
Hendry, E., Hale, P.J., Moger, J., Savchenko, A.K., Mikhailov, S.A.: Coherent nonlinear optical response of graphene. Phys. Rev. Lett. 105(9), 097401 (2010)
CrossRef Google scholar
[11]
Im, J.H., Choi, S.Y., Rotermund, F., Yeom, D.I.: All-fiber Erdoped dissipative soliton laser based on evanescent field interaction with carbon nanotube saturable absorber. Opt. Express 18(21), 22141–22146 (2010)
CrossRef Google scholar
[12]
Xia, H., Li, H., Lan, C., Li, C., Zhang, X., Zhang, S., Liu, Y.: Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber. Opt. Express 22(14), 17341–17348 (2014)
CrossRef Google scholar
[13]
Sathiyan, S., Velmurugan, V., Senthilnathan, K., Babu, P., Sivabalan, S.: All-normal dispersion passively mode-locked Yb-doped fiber laser using MoS2-PVA saturable absorber. Laser Phys. 26(5), 055103 (2016)
CrossRef Google scholar
[14]
Shang, X., Xu, N., Zhang, H., Li, D.: Nonlinear photoresponse of high damage threshold titanium disulfide nanocrystals for Q-switched pulse generation. Opt. Laser Technol. 151, 107988 (2022)
CrossRef Google scholar
[15]
Li, L., Pang, L., Wang, R., Zhang, X., Hui, Z., Han, D., Zhao, F., Liu, W.: Ternary transition metal dichalcogenides for high power vector dissipative soliton ultrafast fiber laser. Laser Photonics Rev. 16(2), 2100255 (2022)
CrossRef Google scholar
[16]
Liu, W.J., Liu, M.L., Liu, B., Quhe, R.G., Lei, M., Fang, S.B., Teng, H., Wei, Z.Y.: Nonlinear optical properties of MoS2-WS2 heterostructure in fiber lasers. Opt. Express 27(5), 6689–6699 (2019)
CrossRef Google scholar
[17]
Liu, M., Wu, H., Liu, X., Wang, Y., Lei, M., Liu, W., Guo, W., Wei, Z.: Optical properties and applications of SnS2 SAs with different thickness. Opto-Electron. Adv. 4(10), 200029 (2021)
CrossRef Google scholar
[18]
Sotor, J., Sobon, G., Macherzynski, W., Abramski, K.: Harmonically mode-locked Er-doped fiber laser based on a Sb2Te3 topological insulator saturable absorber. Laser Phys. Lett. 11(5), 055102 (2014)
CrossRef Google scholar
[19]
Liu, H., Zheng, X.W., Liu, M., Zhao, N., Luo, A.P., Luo, Z.C., Xu, W.C., Zhang, H., Zhao, C.J., Wen, S.C.: Femtosecond pulse generation from a topological insulator mode-locked fiber laser. Opt. Express 22(6), 6868–6873 (2014)
CrossRef Google scholar
[20]
Zhang, C., Chu, H., Pan, Z., Pan, H., Zhao, S., Li, D.: Single crystalline BiOCl nanosheets with oxygen vacancies for ultrafast modelocking operation. Opt. Laser Technol. 159, 108945 (2023)
CrossRef Google scholar
[21]
Liu, W., Xiong, X., Liu, M., Xing, X., Chen, H., Ye, H., Han, J., Wei, Z.: Bi4Br4-based saturable absorber with robustness at high power for ultrafast photonic device. Appl. Phys. Lett. 120(5), 053108 (2022)
CrossRef Google scholar
[22]
Wang, L., Li, X., Wang, C., Luo, W., Feng, T., Zhang, Y., Zhang, H.: Few-layer Mxene Ti3C2Tx (T=F, O, Or OH) for robust pulse generation in a compact Er-doped fiber laser. ChemNanoMat 5(9), 1233–1238 (2019)
CrossRef Google scholar
[23]
Jhon, Y.I., Koo, J., Anasori, B., Seo, M., Lee, J.H., Gogotsi, Y., Jhon, Y.M.: Metallic MXene saturable absorber for femtosecond mode-locked lasers. Adv. Mater. 29(40), 1702496 (2017)
CrossRef Google scholar
[24]
Xu, N., Ma, P., Fu, S., Shang, X., Jiang, S., Wang, S., Li, D., Zhang, H.: Tellurene-based saturable absorber to demonstrate large-energy dissipative soliton and noise-like pulse generations. Nanophotonics 9(9), 2783–2795 (2020)
CrossRef Google scholar
[25]
Song, Y., Liang, Z., Jiang, X., Chen, Y., Li, Z., Lu, L., Ge, Y., Wang, K., Zheng, J., Lu, S., Ji, J., Zhang, H.: Few-layer anti-monene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability. 2D Materials 4(4), 045010 (2017)
CrossRef Google scholar
[26]
Lu, L., Liang, Z., Wu, L., Chen, Y., Song, Y., Dhanabalan, S., Ponraj, J., Dong, B., Xiang, Y., Xing, F., Fan, D., Zhang, H.: Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability. Laser Photonics Rev. 12(1), 1700221 (2018)
CrossRef Google scholar
[27]
Liu, W., Liu, M., Yin, J., Chen, H., Lu, W., Fang, S., Teng, H., Lei, M., Yan, P., Wei, Z.: Tungsten diselenide for all-fiber lasers with the chemical vapor deposition method. Nanoscale 10(17), 7971–7977 (2018)
CrossRef Google scholar
[28]
Liu, W., Zhu, Y., Liu, M., Wen, B., Fang, S., Teng, H., Lei, M., Liu, L., Wei, Z.: Optical properties and applications for MoS2-Sb2Te2-MoS2 heterostructure materials. Photon. Res. 6(3), 220–227 (2018)
CrossRef Google scholar
[29]
Zhang, H., Sun, S., Shang, X., Guo, B., Li, X., Chen, X., Jiang, S., Zhang, H., Ågren, H., Zhang, W., Wang, G., Lu, C., Fu, S.: Ultrafast photonics applications of emerging 2D-Xenes beyond graphene. Nanophotonics 11(7), 1261–1284 (2022)
CrossRef Google scholar
[30]
Mu, H., Liu, Y., Bongu, S.R., Bao, X., Li, L., Xiao, S., Zhuang, J., Liu, C., Huang, Y., Dong, Y., Helmerson, K., Wang, J., Liu, G., Du, Y., Bao, Q.: Germanium nanosheets with dirac characteristics as a saturable absorber for ultrafast pulse generation. Adv. Mater. 33(32), e2101042 (2021)
CrossRef Google scholar
[31]
Sun, W., Jiang, K., Tang, W., Su, J., Chen, K., Liu, Q., Xia, W.: Germanene nanosheets for mode-locked pulse generation in fiber lasers. Infrared Phys. Technol. 123, 104128 (2022)
CrossRef Google scholar
[32]
Li, C., Kang, J., Xie, J., Wang, Y., Zhou, L., Hu, H., Li, X., He, J., Wang, B., Zhang, H.: Two-dimensional monoelemental germanene nanosheets: facile preparation and optoelectronic applications. J. Mater. Chem. 8(46), 16318–16325 (2020)
CrossRef Google scholar
[33]
Tang, D.Y., Zhao, L.M., Zhao, B., Liu, A.: Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers. Phys. Rev. A 72(4), 043816 (2005)
CrossRef Google scholar
[34]
Chouli, S., Grelu, P.: Rains of solitons in a fiber laser. Opt. Express 17(14), 11776–11781 (2009)
CrossRef Google scholar
[35]
Chouli, S., Grelu, P.: Soliton rains in a fiber laser: an experimental study. Phys. Rev. A 81(6), 063829 (2010)
CrossRef Google scholar
[36]
Tang, D.Y., Man, W.S., Tam, H.Y., Drummond, P.: Observation of bound states of solitons in a passively mode-locked fiber laser. Phys. Rev. A 64(3), 033814 (2001)
CrossRef Google scholar
[37]
Hsiang, W.W., Chang, C.H., Cheng, C.P., Lai, Y.: Passive synchronization between a self-similar pulse and a bound-soliton bunch in a two-color mode-locked fiber laser. Opt. Lett. 34(13), 1967–1969 (2009)
CrossRef Google scholar
[38]
Zheng, X.W., Luo, Z.C., Liu, H., Zhao, N., Ning, Q.Y., Liu, M., Feng, X., Xing, X., Luo, A., Xu, W.: High-energy noiselike rectangular pulse in a passively mode-locked figure-eight fiber laser. Appl. Phys. Express 7(4), 042701 (2014)
CrossRef Google scholar
[39]
Guo, B., Li, S., Fan, Y., Wang, P.: Versatile soliton emission from a WS2 mode-locked fiber laser. Opt. Commun. 406, 66–71 (2018)
CrossRef Google scholar
[40]
Dong, Z., Tian, J., Li, R., Cui, Y., Zhang, W., Song, Y.: Conventional soliton and noise-like pulse generated in an Er-doped fiber laser with carbon nanotube saturable absorbers. Appl. Sci. (Basel) 10(16), 5536 (2020)
CrossRef Google scholar
[41]
Zhao, W., Huang, Q., Li, K., Gao, C., Cheng, X., Yan, Y., Guo, Q., Sun, X., Mou, C.: High-energy noise-like pulses generated by an erbium-doped fiber laser incorporating a PbS quantum-dot polystyrene composite film. J. Phys. Photonics 3(2), 024015 (2021)
CrossRef Google scholar
[42]
Zhuang, J., Liu, C., Zhou, Z., Casillas, G., Feng, H., Xu, X., Wang, J., Hao, W., Wang, X., Dou, S.X., Hu, Z., Du, Y.: Dirac signature in germanene on semiconducting substrate. Adv. Sci. (Weinh.) 5(7), 1800207 (2018)
CrossRef Google scholar
[43]
Wang, Y., Fu, S., Kong, J., Komarov, A., Klimczak, M., Buczyński, R., Tang, X., Tang, M., Qin, Y., Zhao, L.: Nonlinear Fourier transform enabled eigenvalue spectrum investigation for fiber laser radiation. Photon. Res. 9(8), 1531–1539 (2021)
CrossRef Google scholar
[44]
Wang, Z., Wang, Z., Liu, Y.G., Zhao, W., Zhang, H., Wang, S., Yang, G., He, R.: Q-switched-like soliton bunches and noise-like pulses generation in a partially mode-locked fiber laser. Opt. Express 24(13), 14709–14716 (2016)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 The Author(s) 2023
AI Summary AI Mindmap
PDF(2536 KB)

Accesses

Citations

Detail

Sections
Recommended

/