Self-supervised zero-shot dehazing network based on dark channel prior
Xinjie Xiao, Yuanhong Ren, Zhiwei Li, Nannan Zhang, Wuneng Zhou
Self-supervised zero-shot dehazing network based on dark channel prior
Most learning-based methods previously used in image dehazing employ a supervised learning strategy, which is time-consuming and requires a large-scale dataset. However, large-scale datasets are difficult to obtain. Here, we propose a self-supervised zero-shot dehazing network (SZDNet) based on dark channel prior, which uses a hazy image generated from the output dehazed image as a pseudo-label to supervise the optimization process of the network. Additionally, we use a novel multichannel quad-tree algorithm to estimate atmospheric light values, which is more accurate than previous methods. Furthermore, the sum of the cosine distance and the mean squared error between the pseudo-label and the input image is applied as a loss function to enhance the quality of the dehazed image. The most significant advantage of the SZDNet is that it does not require a large dataset for training before performing the dehazing task. Extensive testing shows promising performances of the proposed method in both qualitative and quantitative evaluations when compared with state-of-the-art methods.
Image dehazing / Quad-tree algorithm / Self-supervised / Zero-shot
[1] |
Bai, J. , Zhu, J. , Zhao, R. , Gu, F. , Wang, J. : Area-based non-maximum suppression algorithm for multi-object fault detection. Front. Optoelectron 13 (4), 425- 432 (2020)
|
[2] |
Sun, L. , Zhao, S. , Li, G. , Liu, B. : High accuracy object detection via bounding box regression network. Front. Optoelectron 12 (3), 324- 331 (2019)
|
[3] |
Sakaridis, C. , Dai, D. , Hecker, S. , Van Gool, L. : Model adaptation with synthetic and real data for semantic dense foggy scene understanding. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 687- 704 (2018)
|
[4] |
Li, X. , Liu, G. , Sun, S. : Efficient point cloud segmentation approach using energy optimization with geometric features for 3d scene understanding. JOSA A 38 (1), 60- 70 (2021)
|
[5] |
Cai, B. , Xu, X. , Jia, K. , Qing, C. , Tao, D. : Dehazenet: an end-to-end system for single image haze removal. IEEE Trans. Image Process 25 (11), 5187- 5198 (2016)
|
[6] |
Li, B. , Peng, X. , Wang, Z. , Xu, J. , Feng, D. : Aod-net: all-in-one dehazing network. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 4770- 4778 (2017)
|
[7] |
Chen, D. , He, M. , Fan, Q. , Liao, J. , Zhang, L. , Hou, D. , Yuan, L. , Hua, G. : Gated context aggregation network for image dehazing and deraining. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1375- 1383 (2019)
|
[8] |
Qu, Y. , Chen, Y. , Huang, J. , Xie, Y. : Enhanced pix2pix dehazing network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8160- 8168 (2019)
|
[9] |
Tang, G. , Zhao, L. , Jiang, R. , Zhang, X. : Single image dehazing via lightweight multi-scale networks. In: IEEE International Conference on Big Data (big Data), pp. 5062- 5069 (2019)
|
[10] |
Suresh, A. , Nisha, J. , Gopi, V.P. : Rich feature distillation with feature affinity module for efficient image dehazing. Optik 267, 169656 (2022)
|
[11] |
Xu, L. , Wei, Y. : “Pyramid deep dehazing”: an unsupervised single image dehazing method using deep image prior. Opt. Laser Technol. 148, 107788 (2022)
|
[12] |
Hendriksen, A.A. , Pelt, D.M. , Batenburg, K.J. : Noise2iInverse: self-supervised deep convolutional denoising for tomography. IEEE Trans. Comput. Imaging 6, 1320- 1335 (2020)
|
[13] |
Chen, L. , Bentley, P. , Mori, K. , Misawa, K. , Fujiwara, M. , Rueckert, D. : Self-supervised learning for medical image analysis using image context restoration. Med. Image Anal. 58, 101539 (2019)
|
[14] |
Wang, F. , Bian, Y. , Wang, H. , Lyu, M. , Pedrini, G. , Osten, W. , Barbastathis, G. , Situ, G. : Phase imaging with an untrained neural network. Light Sci. Appl. 9 (1), 1- 7 (2020)
|
[15] |
Li, B. , Gou, Y. , Liu, J.Z. , Zhu, H. , Zhou, J.T. , Peng, X. : Zero-shot image dehazing. IEEE Trans. Image Process 29, 8457- 8466 (2020)
|
[16] |
McCartney, E.J. : Optics of the atmosphere: scattering by molecules and particles. New York, John Wiley and Sons Inc 1976, 421 (1976)
|
[17] |
Narasimhan, S.G. , Nayar, S.K. : Contrast restoration of weather degraded images. IEEE Trans. Pattern Anal. Mach. Intell. 25 (6), 713- 724 (2003)
|
[18] |
He, K. , Sun, J. , Tang, X. : Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33 (12), 2341- 2353 (2011)
|
[19] |
Li, Z. , Zheng, J. : Edge-preserving decomposition-based single image haze removal. IEEE Trans. Image Process 24 (12), 5432- 5441 (2015)
|
[20] |
Satrasupalli, S. , Daniel, E. , Guntur, S.R. : Single image haze removal based on transmission map estimation using encoder-decoder based deep learning architecture. Optik 248, 168197 (2021)
|
[21] |
Tan, R.T. : Visibility in bad weather from a single image. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1- 8 (2008). IEEE
|
[22] |
Berman, D. , Treibitz, T. , Avidan, S. : Non-local image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1674- 1682 (2016)
|
[23] |
Ronneberger, O. , Fischer, P. , Brox, T. : U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234- 241 (2015). Springer
|
[24] |
He, K. , Sun, J. , Tang, X. : Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell 35 (6), 1397- 1409 (2012)
|
[25] |
Chen, G. , Li, L. , Jin, W. , Qiu, S. , Guo, H. : Weighted sparse representation and gradient domain guided filter pyramid image fusion based on low-light-level dual-channel camera. IEEE Photonics J. 11 (5), 1- 15 (2019)
|
[26] |
Wang, W. , Yuan, X. , Wu, X. , Liu, Y. : Fast image dehazing method based on linear transformation. IEEE Trans. Multimedia 19 (6), 1142- 1155 (2017)
|
[27] |
Gao, G. , Huang, H. , Fu, C. , Li, Z. , He, R. : Information bottleneck disentanglement for identity swapping. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3404- 3413 (2021)
|
[28] |
Li, B. , Ren, W. , Fu, D. , Tao, D. , Feng, D. , Zeng, W. , Wang, Z. : Benchmarking single-image dehazing and beyond. IEEE Trans. Image Process 28 (1), 492- 505 (2019)
|
[29] |
Ancuti, C. , Ancuti, C.O. , Timofte, R. , De Vleeschouwer, C. : I-haze: a dehazing benchmark with real hazy and haze-free indoor images. In: International Conference on Advanced Concepts for Intelligent Vision Systems, pp. 620- 631 (2018). Springer
|
[30] |
Ancuti, C.O. , Ancuti, C. , Timofte, R. , De Vleeschouwer, C. : O-haze: a dehazing benchmark with real hazy and haze-free out-door images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 754- 762 (2018)
|
[31] |
Mittal, A. , Soundararajan, R. , Bovik, A.C. : Making a “completely blind” image quality analyzer. IEEE Signal Process. Lett. 20 (3), 209- 212 (2012)
|
[32] |
Li, Z. , Shu, H. , Zheng, C. : Multi-scale single image dehazing using laplacian and gaussian pyramids. IEEE Trans. Image Process 30, 9270- 9279 (2021)
|
[33] |
Ju, M. , Ding, C. , Ren, W. , Yang, Y. , Zhang, D. , Guo, Y.J. : Ide: image dehazing and exposure using an enhanced atmospheric scattering model. IEEE Trans. Image Process 30, 2180- 2192 (2021)
|
[34] |
Shin, J. , Park, H. , Paik, J. : Region-based dehazing via dual-supervised triple-convolutional network. IEEE Trans. Multimedia 24, 245- 260 (2021)
|
[35] |
Zhao, S. , Zhang, L. , Shen, Y. , Zhou, Y. : Refinednet: a weakly supervised refinement framework for single image dehazing. IEEE Trans. Image Process 30, 3391- 3404 (2021)
|
[36] |
Li, J. , Li, Y. , Zhuo, L. , Kuang, L. , Yu, T. : Usid-net: Unsupervised single image dehazing network via disentangled representations. IEEE Trans. Multimedia (2022)
|
[37] |
Kingma, D.P. , Ba, J. : Adam: A method for stochastic optimization. arXiv preprint arXiv: 1412. 6980 (2014)
|
[38] |
Ulyanov, D. , Vedaldi, A. , Lempitsky, V. : Deep image prior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9446- 9454 (2018)
|
/
〈 | 〉 |