Design and modeling of high-performance mid-wave infrared InAsSb-based nBn photodetector using barrier band engineering approaches

Maryam Shaveisi, Peiman Aliparast

PDF(1526 KB)
PDF(1526 KB)
Front. Optoelectron. ›› 2023, Vol. 16 ›› Issue (1) : 5. DOI: 10.1007/s12200-023-00060-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Design and modeling of high-performance mid-wave infrared InAsSb-based nBn photodetector using barrier band engineering approaches

Author information +
History +

Abstract

We report a new nBn photodetector (nBn-PD) design based on the InAlSb/AlSb/InAlSb/InAsSb material systems for mid-wavelength infrared (MWIR) applications. In this structure, delta-doped compositionally graded barrier (δ-DCGB) layers are suggested, the advantage of which is creation of a near zero valence band offset in nBn photodetectors. The design of the δ-DCGB nBn-PD device includes a 3 μm absorber layer (n-InAs0.81Sb0.19), a unipolar barrier layer (AlSb), and 0.2 μm contact layer (n-InAs0.81Sb0.19) as well as a 0.116 μm linear grading region (InAlSb) from the contact to the barrier layer and also from the barrier to the absorber layer. The analysis includes various dark current contributions, such as the Shockley–Read–Hall (SRH), trap-assisted tunneling (TAT), Auger, and Radiative recombination mechanisms, to acquire more precise results. Consequently, we show that the method used in the nBn device design leads to diffusion-limited dark current so that the dark current density is 2.596 × 10-8 A/cm2 at 150 K and a bias voltage of - 0.2 V. The proposed nBn detector exhibits a 50% cutoff wavelength of more than 5 μm, the peak current responsivity is 1.6 A/W at a wavelength of 4.5 μm and a - 0.2 V bias with 0.05 W/cm2 backside illumination without anti-reflective coating. The maximum quantum efficiency at 4.5 μm is about 48.6%, and peak specific detectivity (D*) is of 3.37 × 1010 cm·Hz1/2/W. Next, to solve the reflection concern in this nBn devices, we use a BaF2 anti-reflection coating layer due to its high transmittance in the MWIR window. It leads to an increase of almost 100% in the optical response metrics, such as the current responsivity, quantum efficiency, and detectivity, compared to the optical response without an anti-reflection coating layer.

Graphical abstract

Keywords

Mid-wave infrared detectors / III-V compound semiconductors / Grading material systems / nBn architecture

Cite this article

Download citation ▾
Maryam Shaveisi, Peiman Aliparast. Design and modeling of high-performance mid-wave infrared InAsSb-based nBn photodetector using barrier band engineering approaches. Front. Optoelectron., 2023, 16(1): 5 https://doi.org/10.1007/s12200-023-00060-9

References

[1]
Rogalski,A.: InAs1-xSbx infrared detectors. Prog. Quantum Electron. 13 (3), 191- 231 (1989)
[2]
Coderre,W.M., Woolley,J.C.: Electrical properties of InAsxSb1-x alloys. Can. J. Phys. 46 (10), 1207- 1214 (1968)
[3]
Rogalski,A.: New Ternary Alloy Systems for Infrared Detectors. In: Liquid and Solid State Crystals: Physics, Technology and Applications. 1993. SPIE (1993)
[4]
Rogalski,A.: Infrared Detectors 2nd ed. London—New York, CRC-Press Taylor Francis Group. (2011)
[5]
Abautret,J., Perez,J.P., Evirgen,A., Rothman,J., Cordat,A., Christol,P.: Characterization of midwave infrared InSb avalanche photodiode. J. Appl. Phys. 117 (24), 244502 (2015)
[6]
Craig,A., Marshall,A.R.J., Tian,Z.B., Krishna,S., Krier,A.: Mid-infrared InAs0.79Sb0.21-based nBn photodetectors with Al0.9Ga0.2As0.1Sb0.9 barrier layers, and comparisons with InAs0.87Sb0.13 pin diodes, both grown on GaAs using interfacial misfit arrays. Appl. Phys. Lett. 103 (25), 253502 (2013)
[7]
Soibel,A., Hill,C.J., Keo,S.A., Hoglund,L., Rosenberg,R., Kowalczyk,R., Khoshakhlagh,A., Fisher,A., Ting,D.Z.Y., Gunapala,S.D.: Room temperature performance of mid-wavelength infrared InAsSb nBn detectors. Appl. Phys. Lett. 105 (2), 023512 (2014)
[8]
Klipstein.P., Gross.Y., Aronov.D., Ezra M.ben, Berkowicz,E, Cohen.Y., Fraenkel.R., Glozman.A., Grossman.S., Klin.O., Lukomsky.I., Marlowitz.T., Shkedy.L., Shtrichman.I., Snapi.N., Tuito.A., Yassen.M., Weiss.E.: Low SWaP MWIR detector based on XBn focal plane array. In: Proceedings of Infrared Technology and Applications XXXIX. SPIE (2013)
[9]
Klipstein,P.: XBnn and XBpp infrared detectors. J. Cryst. Growth 425, 351- 356 (2015)
[10]
Klipstein,P., Avnon,E., Benny,Y., Berkowicz,E., Cohen,Y., Dobromislin,R., Fraenkel,R., Gershon,G., Glozman,A., Hojman,E., Ilan,E., Karni,Y., Klin,O., Kodriano,Y., Krasovitsky,L., Langof,L., Lukomsky,I., Nevo,I., Nitzani,M., Pivnik,I., Rappaport,N., Rosenberg,O., Shtrichman,I., Shkedy,L., Snapi,N., Talmor,R., Tessler,R., Weiss,E., Tuito,A.: Development and production of array barrier detectors at SCD. J. Electron. Mater. 46 (9), 5386- 5393 (2017)
[11]
Shkedy.L, Brumer.M, Klipstein.P, Nitzani.M, Avnon.E, Kodriano.Y, Lukomsky.I, Shtrichman.I.: Development of 10 μm pitch XBn detector for low SWaP MWIR applications. In: Proceedings of Infrared Technology and Applications XLII. SPIE (2016)
[12]
Rhiger,D.R., Smith,E.P., Kolasa,B.P., Kim,J.K., Klem,J.F., Hawkins,S.D.: Analysis of III-V superlattice nBn device characteristics. J. Electron. Mater. 45 (9), 4646- 4653 (2016)
[13]
Klipstein,P., Benny,Y., Cohen,Y., Fraenkel,N., Gliksman,S., Glozman,A., Hadari,N., Hirsh,I., Katz,M., Klin,O., Langof,L., Lukomsky,I., Marderfeld,I., Nitzani,M., Rakhmilevich,D., Shusterman,S., Shafir,I., Shtrichman,I., Sicron,N., Snapi,N., Yaron,N.: XBn and XBp detectors based on type II superlattices. J. Electron. Mater. 51 (9), 1- 6 (2022)
[14]
Maimon,S., Wicks,G.: nBn detector, an infrared detector with reduced dark current and higher operating temperature. Appl. Phys. Lett. 89 (15), 151109 (2006)
[15]
Wicks,G., Savich.G. R., Pedrazzani.J. R., Maimon.S.: Infrared detector epitaxial designs for suppression of surface leakage current. In: Proceedings of Quantum Sensing and Nanophotonic Devices VII. SPIE (2010)
[16]
Savich,G., Pedrazzani,J.R., Sidor,D.E., Maimon,S., Wicks,G.W.: Dark current filtering in unipolar barrier infrared detectors. Appl. Phys. Lett. 99 (12), 121112 (2011)
[17]
Ting,D.Z., Soibel,A., Khoshakhlagh,A., Gunapala,S.D.: Theoretical analysis of nBn infrared photodetectors. Opt. Eng. 56 (9), 091606 (2017)
[18]
Akhavan,N., Umana-Membreno,G.A., Jolley,G., Antoszewski,J., Faraone,L.: A method of removing the valence band discontinuity in HgCdTe-based nBn detectors. Appl. Phys. Lett. 105 (12), 121110 (2014)
[19]
Akhavan,N.D., Umana-Membreno,G.A., Gu,R., Asadnia,M., Antoszewski,J., Faraone,L.: Superlattice barrier HgCdTe nBn infrared photodetectors: validation of the effective mass approximation. IEEE Trans. Electron Dev. 63 (12), 4811- 4818 (2016)
[20]
Deng,G., Yang,W., Zhao,P., Zhang,Y.: High operating temperature InAsSb-based mid-infrared focal plane array with a band-aligned compound barrier. Appl. Phys. Lett. 116 (3), 031104 (2020)
[21]
Deng,G., Yang,W., Gong,X., Zhang,Y.: High-performance uncooled InAsSb-based pCBn mid-infrared photodetectors. Infrared Phys. Technol. 105, 103260 (2020)
[22]
Konovalov,G. G., Mikhailova.M. P., Andreev.I. A., Moiseev.K. D., Ivanov.E. V., Mikhailov.M. Y., Yakovlev.Y. P.: Photovoltaic detector based on type II heterostructure with deep AlSb/InAsSb/ AlSb quantum well in the active region for the mid-infrared spectral range. In: Proceedings of Journal of Physics: Conference Series. IOP Publishing (2013)
[23]
Uzgur,F., Karaca,U., Kizilkan,E., Kocaman,S.: All InGaAs unipolar barrier infrared detectors. IEEE Trans. Electron Dev. 65 (4), 1397- 1403 (2018)
[24]
Akhavan,N.D., Umana-Membreno,G.A., Gu,R., Antoszewski,J., Faraone,L.: Delta doping in HgCdTe-based unipolar barrier photodetectors. IEEE Trans. Electron Dev. 65 (10), 4340- 4345 (2018)
[25]
Rogalski,A., Ciupa,R., Larkowski,W.: Near room-temperature InAsSb photodiodes: theoretical predictions and experimental data. Solid-State Electron. 39 (11), 1593- 1600 (1996)
[26]
Rogalski,A.: New Ternary alloy systems for infrared detectors. In: Proceedings of Liquid and Solid State Crystals: Physics, Technology and Applications. SPIE Press (1994)
[27]
Madelung,O.: Physical Data. In: Semiconductors—Basic Data. p. 5-298. Berlin, Springer (1996)
[28]
Vurgaftman,I., Meyer,J., Ram-Mohan,L.: Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89 (11), 5815- 5875 (2001)
[29]
D’souza,A., Robinson,E., Ionescu,A.C., Okerlund,D., de Lyon,T.J., Sharifi,H., Roebuck,M., Yap,D., Rajavel,R.D., Dhar,N., Wijewarnasuriya,P.S., Grein,C.: Electrooptical characterization of MWIR InAsSb detectors. J. Electron. Mater. 41 (10), 2671- 2678 (2012)
[30]
Kabanau,D., Lebiadok,Y., Yakovlev,Y.P.: Auger recombination and amplified luminescence in InAsSb/InAsSbP Leds at 10-60 K. J. Appl. Spectrosc. 84 (5), 843- 849 (2017)
[31]
Chen,G., Sun,W., Lv,Y.: Empirical expression for the composition and temperature dependence of the energy gap in InAlSb. Infrared Phys. Technol. 81, 262- 265 (2017)
[32]
Rogalski,A., Orman,Z.: Band-to-band recombination in InAs1-xSbx. Infrared Phys. 25 (3), 551- 560 (1985)
[33]
Martyniuk,P., Rogalski,A.: Modeling of InAsSb/AlAsSb nBn HOT detector’s performance limit. In: Proceedings of Infrared Technology and Applications XXXIX. SPIE (2013)
[34]
Deng,G., Chen,D., Yang,S., Yang,C., Yuan,J., Yang,W., Zhang,Y.: High operating temperature pBn barrier mid-wavelength infrared photodetectors and focal plane array based on InAs/InAsSb strained layer superlattices. Opt. Express 28 (12), 17611- 17619 (2020)
[35]
Kulikov,V., Maslov,D.V., Sabirov,A.R., Solodkov,A.A., Dudin,A.L., Katsavets,N.I., Kogan,I.V., Shukov,I.V., Chaly,V.P.: nBn-photodiode based on InAsSb/AlAsSb alloys with a long-wavelength cutoff of 5 μm. Semiconductors 52 (13), 1743- 1747 (2018)
[36]
Chen,D., Li,D., Xiao,T., Shi,J., He,Y., Gong,X., Yang,S., Yue,B., Zhao,J., Yang,W., Deng,G.: Bulk InAsSb-based upside-down pCBn photodetectors with greater than 5 μm cut-off wavelength. AIP Adv. 12 (5), 055327 (2022)
[37]
Martyniuk,P., Rogalski,A.: Performance limits of the mid-wave InAsSb/AlAsSb nBn HOT infrared detector. Opt. Quantum Electron. 46 (4), 581- 591 (2014)
[38]
Nolde,J.A., Jackson,E.M., Kim,M., Kim,C.S., Canedy,C.L., Warren,M.V., Tomasulo,S., Affouda,C.A., Cleveland,E.R., Vur-gaftman,I., Meyer,J.R., Aifer,E.H.: Temperature dependence of quantum efficiency enhancement using plasmonic gratings on nBn detectors with thin absorbers. J. Nanophotonics 13 (4), 046007 (2019)
[39]
Soibel.A., Ting.D. Z., Hill.C. J., Fisher.A. M, Hoglund.L, Keo.S. A, Gunapala.S. D.: Extended cut-off wavelength nBn detector utilizing InAsSb/InSb digital alloy absorber. In: Proceedings of Quantum Sensing and Nano Electronics and Photonics XIV. SPIE (2017)
[40]
Khai,L.W., Hua,T.K., Daosheng,L., Wicaksono,S., Fatt,Y.S.: Room temperature 3. 5 μm mid-infrared InAs photovoltaic detector on a Si substrate. IEEE Photonics Technol. Lett. 28 (15), 1653- 1656 (2016)
[41]
Martyniuk,P., Michalczewski,K., Tsai,T.Y., Wu,C.H., Wu,Y.R.: A thermoelectrically cooled nBn type-II superlattices InAs/ InAsSb/B-AlAsSb mid-wave infrared detector. Phys. Status Solidi A 217 (6), 1900522 (2020)
[42]
Tong,J., Tobing,L.Y.M., Qian,L., Suo,F., Zhang,D.H.: InAs0.9Sb0.1-based hetero-pin structure grown on GaSb with high mid-infrared photodetection performance at room temperature. J. Mater. Sci. 53 (18), 13010- 13017 (2018)
[43]
Leviton,D.B., Frey,B.J., Kvamme,T.: High accuracy, absolute, cryogenic, refractive index measurements of infrared lens materials for JWST NIRCam using CHARMS. In: Proceedings of Cryogenic Optical Systems and Instruments XI. SPIE (2005)

RIGHTS & PERMISSIONS

2023 The Author(s)
AI Summary AI Mindmap
PDF(1526 KB)

Accesses

Citations

Detail

Sections
Recommended

/