Design of scalable metalens array for optical addressing

Tie Hu, Xing Feng, Zhenyu Yang, Ming Zhao

PDF(4817 KB)
PDF(4817 KB)
Front. Optoelectron. ›› 2022, Vol. 15 ›› Issue (3) : 32. DOI: 10.1007/s12200-022-00035-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Design of scalable metalens array for optical addressing

Author information +
History +

Abstract

Large-scale trapped-ion quantum computers hold great promise to outperform classical computers and are crucially desirable for finance, pharmaceutical industry, fundamental chemistry and other fields. Currently, a big challenge for trapped-ion quantum computers is the poor scalability mainly brought by the optical elements that are used for optical addressing. Metasurfaces provide a promising solution due to their excellent flexibility and integration ability. Here, we propose and numerically demonstrate a scalable off-axis metalens array for optical addressing working at the wavelength of 350 nm. Metalens arrays designed for x linearly polarized and left circularly polarized light respectively can focus the collimated addressing beam array into a compact focused spot array with spot spacing of 5 μm, featuring crosstalk below 0.82%.

Graphical abstract

Keywords

Metalens array / Optical addressing / Scalability

Cite this article

Download citation ▾
Tie Hu, Xing Feng, Zhenyu Yang, Ming Zhao. Design of scalable metalens array for optical addressing. Front. Optoelectron., 2022, 15(3): 32 https://doi.org/10.1007/s12200-022-00035-2

References

[1]
Bruzewicz, C.D. , Chiaverini, J. , Mcconnell, R. , Sage, J.M. : Trapped-ion quantum computing: progress and challenges. Appl. Phys. Rev. 6 (2), 021314 (2019)
[2]
Niffenegger, R.J. , Stuart, J. , Sorace-Agaskar, C. , Kharas, D. , Bramhavar, S. , Bruzewicz, C.D. , Loh, W. , Maxson, R.T. , McConnell, R. , Reens, D. , West, G.N. , Sage, J.M. , Chiaverini, J. : Integrated multi-wavelength control of an ion qubit. Nature 586 (7830), 538- 542 (2020)
[3]
Shih, C.Y. , Motlakunta, S. , Kotibhaskar, N. , Sajjan, M. , Hablützel, R. , Islam, R. : Reprogrammable and high-precision holographic optical addressing of trapped ions for scalable quantum control. NPJ Quantum Information 7 (1), 57 (2021)
[4]
Debnath, S. , Linke, N.M. , Figgatt, C. , Landsman, K.A. , Wright, K. , Monroe, C. : Demonstration of a small programmable quantum computer with atomic qubits. Nature 536 (7614), 63- 66 (2016)
[5]
Olmschenk, S. , Matsukevich, D.N. , Maunz, P. , Hayes, D. , Duan, L.M. , Monroe, C. : Quantum teleportation between distant matter qubits. Science 323 (5913), 486- 489 (2009)
[6]
Knoernschild, C. , Zhang, X.L. , Isenhower, L. , Gill, A.T. , Lu, F.P. , Saffman, M. , Kim, J. : Independent individual addressing of multiple neutral atom qubits with a micromirror-based beam steering system. Appl. Phys. Lett. 97 (13), 134101 (2010)
[7]
Crain, S. , Mount, E. , Baek, S. , Kim, J. : Individual addressing of trapped 171Yb+ ion qubits using a microelectromechanical systems-based beam steering system. Appl. Phys. Lett. 105 (18), 181115 (2014)
[8]
Streed, E.W. , Norton, B.G. , Jechow, A. , Weinhold, T.J. , Kielpinski, D. : Imaging of trapped ions with a microfabricated optic for quantum information processing. Phys. Rev. Lett. 106 (1), 010502.1- 010502.4 (2011)
[9]
Ghadimi, M. , Blūms, V. , Norton, B.G. , Fisher, P.M. , Connell, S.C. , Amini, J.M. , Volin, C. , Hayden, H. , Pai, C.S. , Kielpinski, D. , Lobino, M. , Streed, E.W. : Scalable ion-photon quantum interface based on integrated diffractive mirrors. NPJ Quantum Information 3 (1), 4 (2017)
[10]
Kielpinski, D. , Volin, C. , Streed, E.W. , Lenzini, F. , Lobino, M. : Integrated optics architecture for trapped-ion quantum information processing. Quantum Inf. Process. 15 (12), 5315- 5338 (2016)
[11]
Mehta, K.K. , Bruzewicz, C.D. , McConnell, R. , Ram, R.J. , Sage, J.M. , Chiaverini, J. : Integrated optical addressing of an ion qubit. Nat. Nanotechnol. 11 (12), 1066- 1070 (2016)
[12]
Mehta, K.K. , Ram, R.J. : Precise and diffraction-limited wave-guide-to-free-space focusing gratings. Sci. Rep. 7 (1), 2019 (2017)
[13]
Mehta, K.K. , Zhang, C. , Malinowski, M. , Nguyen, T.L. , Stadler, M. , Home, J.P. : Integrated optical multi-ion quantum logic. Nature 586 (7830), 533- 537 (2020)
[14]
Neshev, D. , Aharonovich, I. : Optical metasurfaces: new generation building blocks for multi-functional optics. Light Sci. Appl. 7 (1), 58 (2018)
[15]
Huang, K. , Qin, F. , Liu, H. , Ye, H. , Qiu, C. , Hong, M. , Luk’yanchuk, B. , Teng, J. : Planar diffractive lenses: fundamentals, functionalities, and applications. Adv. Mater. 30, 1704556 (2018)
[16]
de Leon, N.P. , Itoh, K.M. , Kim, D. , Mehta, K.K. , Northup, T.E. , Paik, H. , Palmer, B.S. , Samarth, N. , Sangtawesin, S. , Steuerman, D.W. : Materials challenges and opportunities for quantum computing hardware. Science 372 (6539), eabb2823 (2021)
[17]
Kamali, S.M. , Arbabi, A. , Arbabi, E. , Horie, Y. , Faraon, A. : Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces. Nat. Commun. 7 (1), 11618 (2016)
[18]
Jiang, Z.H. , Kang, L. , Werner, D.H. : Conformal metasurface-coated dielectric waveguides for highly confined broadband optical activity with simultaneous low-visibility and reduced crosstalk. Nat. Commun. 8 (1), 356 (2017)
[19]
Dolan, J.A. , Cai, H. , Delalande, L. , Li, X. , Martinson, A.B.F. , de Pablo, J.J. , López, D. , Nealey, P.F. : Broadband liquid crystal tunable metasurfaces in the visible: liquid crystal inhomogeneities across the metasurface parameter space. ACS Photonics 8 (2), 567- 575 (2021)
[20]
Khorasaninejad, M. , Capasso, F. : Metalenses: versatile multifunctional photonic components. Science 358 (6367), eaam8100 (2017)
[21]
Capasso, F. : The future and promise of flat optics: a personal perspective. Nanophotonics 7 (6), 953- 957 (2018)
[22]
Zhao, R. , Sain, B. , Wei, Q. , Tang, C. , Li, X. , Weiss, T. , Huang, L. , Wang, Y. , Zentgraf, T. : Multichannel vectorial holographic display and encryption. Light Sci Appl 7 (1), 95 (2018)
[23]
Chen, M.K. , Wu, Y. , Feng, L. , Fan, Q. , Lu, M. , Xu, T. , Tsai, D.P. : Principles, functions, and applications of optical metalens. Adv. Opt. Mater. 9 (4), 2001414 (2021)
[24]
Leitis, A. , Tseng, M.L. , John-Herpin, A. , Kivshar, Y.S. , Altug, H. : Wafer-scale functional metasurfaces for mid-infrared photonics and biosensing. Adv. Mater. 33 (43), e2102232 (2021)
[25]
Wang, H.C. , Chu, C.H. , Wu, P.C. , Hsiao, H.H. , Wu, H.J. , Chen, J.W. , Lee, W.H. , Lai, Y.C. , Huang, Y.W. , Tseng, M.L. , Chang, S.W. , Tsai, D.P. : Ultrathin planar cavity metasurfaces. Small 14 (17), e1703920 (2018)
[26]
Zang, W. , Yuan, Q. , Chen, R. , Li, L. , Li, T. , Zou, X. , Zheng, G. , Chen, Z. , Wang, S. , Wang, Z. , Zhu, S. : Chromatic dispersion manipulation based on metalenses. Adv. Mater. 32 (27), e1904935 (2020)
[27]
Li, W. , Qi, J. , Sihvola, A. : Meta-imaging: from non-computational to computational. Adv. Opt. Mater. 8 (23), 2001000 (2020)
[28]
Wei, Q. , Huang, L. , Zentgraf, T. , Wang, Y. : Optical wavefront shaping based on functional metasurfaces. Nanophotonics 9 (5), 987- 1002 (2020)
[29]
Tkachenko, G. , Stellinga, D. , Ruskuc, A. , Chen, M. , Dholakia, K. , Krauss, T.F. : Optical trapping with planar silicon metalenses. Opt. Lett. 43 (14), 3224- 3227 (2018)
[30]
Tseng, M.L. , Hsiao, H.H. , Chu, C.H. , Chen, M.K. , Sun, G. , Liu, A.Q. , Tsai, D.P. : Metalenses: advances and applications. Adv. Opt. Mater. 6 (18), 1800554 (2018)
[31]
Zhang, C. , Divitt, S. , Fan, Q. , Zhu, W. , Agrawal, A. , Lu, Y. , Xu, T. , Lezec, H.J. : Low-loss metasurface optics down to the deep ultraviolet region. Light Sci. Appl. 9 (1), 55 (2020)
[32]
Lin, R.J. , Su, V.C. , Wang, S. , Chen, M.K. , Chung, T.L. , Chen, Y.H. , Kuo, H.Y. , Chen, J.W. , Chen, J. , Huang, Y.T. , Wang, J.H. , Chu, C.H. , Wu, P.C. , Li, T. , Wang, Z. , Zhu, S. , Tsai, D.P. : Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol. 14 (3), 227- 231 (2019)
[33]
Yang, Z. , Wang, Z. , Wang, Y. , Feng, X. , Zhao, M. , Wan, Z. , Zhu, L. , Liu, J. , Huang, Y. , Xia, J. , Wegener, M. : Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling. Nat. Commun. 9 (1), 4607 (2018)
[34]
Wang, Y. , Wang, Z. , Feng, X. , Zhao, M. , Zeng, C. , He, G. , Yang, Z. , Zheng, Y. , Xia, J. : Dielectric metalens-based Hartmann-Shack array for a high-efficiency optical multiparameter detection system. Photonics Research 8 (4), 482- 489 (2020)
[35]
Feng, X. , Wang, Y.X. , Wei, Y.X. , Hu, T. , Xiao, S.Y. , He, G.Q. , Zhao, M. , Xia, J.S. , Yang, Z.Y. : Optical multiparameter detection system based on a broadband achromatic metalens array. Adv. Opt. Mater. 9 (19), 2100772 (2021)
[36]
Li, L. , Liu, Z. , Ren, X. , Wang, S. , Su, V.C. , Chen, M.K. , Chu, C.H. , Kuo, H.Y. , Liu, B. , Zang, W. , Guo, G. , Zhang, L. , Wang, Z. , Zhu, S. , Tsai, D.P. : Metalens-array-based high-dimensional and multiphoton quantum source. Science 368 (6498), 1487- 1490 (2020)
[37]
Gao, L. , Lemarchand, F. , Lequime, M. : Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering. Opt. Express 20, 15734- 15751 (2012)
[38]
Sun, T. , Hu, J. , Zhu, X. , Xu, F. , Wang, C. : Broadband single-chip full stokes polarization-spectral imaging based on all-dielectric spatial multiplexing metalens. Laser Photonics Rev. 16, 2100650 (2022)
[39]
Khorasaninejad, M. , Chen, W.T. , Oh, J. , Capasso, F. : Super-dispersive off-axis meta-lenses for compact high resolution spectroscopy. Nano Lett. 16 (6), 3732- 3737 (2016)
[40]
Rabiner, L.R. , Schafer, R.W. , Rader, C.M. : The Chirp z-transform algorithm and its application. Bell Syst. Tech. J. 48 (5), 1249- 1292 (2014)
[41]
Meem, M. , Banerji, S. , Pies, C. , Oberbiermann, T. , Majumder, A. , Sensale-Rodriguez, B. , Menon, R. : Large-area, high-numericalaperture multi-level difractive lens via inverse design. Optica 7 (3), 252- 253 (2020)

RIGHTS & PERMISSIONS

2022 The Author(s)
AI Summary AI Mindmap
PDF(4817 KB)

Accesses

Citations

Detail

Sections
Recommended

/