Co3O4@NiMoO4 composite electrode materials for flexible hybrid capacitors

Yongli Tong, Tong Zhang, Yuchen Sun, Xiaowei Wang, Xiang Wu

Front. Optoelectron. ›› 2022, Vol. 15 ›› Issue (2) : 25.

PDF(1954 KB)
Front. Optoelectron. All Journals
PDF(1954 KB)
Front. Optoelectron. ›› 2022, Vol. 15 ›› Issue (2) : 25. DOI: 10.1007/s12200-022-00029-0

Co3O4@NiMoO4 composite electrode materials for flexible hybrid capacitors

Author information +
History +

Abstract

Co3O4 nanomaterials as electrodes have been studied widely in the past decade due to their unique structural characteristics. However, their performance does not yet reach the level required for practical applications. It is, nevertheless, an effective strategy to synthesize hybrid electrode materials with high energy density. Herein we prepare Co3O4@NiMoO4 nanowires by a two-step hydrothermal method. The as-obtained sample can be directly used as cathode material of supercapacitors; with specific capacitance of 600 C/g at 1 A/g. An assembled capacitor delivers an energy density of 36.1 Wh/kg at 2700 W/kg, and retains 98.2% of the initial capacity after 8000 cycles.

Graphical abstract

Keywords

Supercapacitor / Co3O4@NiMoO4 nanowires / Specific capacitance / Energy density

Cite this article

Download citation ▾
Yongli Tong, Tong Zhang, Yuchen Sun, Xiaowei Wang, Xiang Wu. Co3O4@NiMoO4 composite electrode materials for flexible hybrid capacitors. Front. Optoelectron., 2022, 15(2): 25 https://doi.org/10.1007/s12200-022-00029-0

References

[1]
Liu, Y., Wu, X.: Hydrogen and sodium ions co-intercalated vanadium dioxide electrode materials with enhanced zinc ion storage capacity. Nano Energy 86, 106124 (2021)
CrossRef Google scholar
[2]
Shi, W., Lv, X., Shen, Y.: BiOI/WO3 photoanode with enhanced photoelectrochemical water splitting activity. Front. Optoelectron. 11(4), 367–374 (2018)
CrossRef Google scholar
[3]
Liu, Y., Hu, P., Liu, H., Wu, X., Zhi, C.: Tetragonal VO2 hollow nanospheres as robust cathode materials for aqueous zinc ion batteries. Mater. Today Energy 17, 100431 (2020)
CrossRef Google scholar
[4]
Zhao, Y., He, J., Dai, M., Zhao, D., Wu, X., Liu, B.: Emerging CoMn-LDH@MnO2 electrode materials assembled using nanosheets for flexible and foldable energy storage devices. J. Energy Chem. 45, 67–73 (2020)
CrossRef Google scholar
[5]
Dai, M., Liu, H., Zhao, D., Zhu, X., Umar, A., Algarni, H., Wu, X.: Ni foam substrates modified with a ZnCo2O4 nanowire coated with Ni(OH)2 nanosheet electrode for hybrid capacitors and electrocatalysts. ACS Appl. Nano Mater. 4(5), 5461–5468 (2021)
CrossRef Google scholar
[6]
Liu, H., Zhao, D., Liu, Y., Tong, Y., Wu, X., Shen, G.: NiMoCo layered double hydroxides for electrocatalyst and supercapacitor electrode. Sci. China Mater. 64(3), 581–591 (2021)
CrossRef Google scholar
[7]
Silvia, P.J., Eddington, K.M., Harper, K.L., Burgin, C.J., Kwapil, T.R.: Reward-seeking deficits in major depression: unpacking appetitive task performance with ex-Gaussian response time variability analysis. Motivation Sci. 7(2), 219–224 (2021)
CrossRef Google scholar
[8]
Zhao, D., Dai, M., Liu, H., Zhu, X., Wu, X.: PPy film anchored on ZnCo2O4 nanowires facilitating efficient bifunctional electrocatalysis. Materials Today Energy 20, 100637 (2021)
CrossRef Google scholar
[9]
Tong, Y., Cheng, X., Liu, X., Qi, D., Chi, B., Wang, Y.: Hybrid Co3O4/Co9S8 nanowires for high-performance asymmetric supercapacitors. J. Nanoelectron. Optoelectron. 15, 237–242 (2020)
CrossRef Google scholar
[10]
Liu, C., Wu, X., Wang, B.: Performance modulation of energy storage devices: a case of Ni-Co-S electrode materials. Chem. Eng. J. 392, 123651 (2020)
CrossRef Google scholar
[11]
Liu, H., Zhao, D., Liu, Y., Hu, P., Wu, X., Xia, H.: Boosting energy storage and electrocatalytic performances by synergizing CoMoO4@ MoZn22 core-shell structures. Chem. Eng. J. 373, 485–492 (2019)
CrossRef Google scholar
[12]
Liu, H., Zhao, D., Hu, P., Chen, K., Wu, X., Xue, D.: Design strategies toward achieving high-performance CoMoO4@ Co1.62Mo6S8 electrode materials. Mater. Today Phys. 13, 100197 (2020)
CrossRef Google scholar
[13]
Peng, S., Li, L., Wu, H., Madhavi, S., Lou, X.: Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors. Adv. Energy Mater. 5(2), 1401172 (2015)
CrossRef Google scholar
[14]
Qiu, K., Lu, Y., Zhang, D., Cheng, J., Yan, H., Xu, J., Liu, X., Kim, J., Luo, Y.: Mesoporous hierarchical core/shell structured ZnCo2O4/ MnO2 nanocone forests for high-performance supercapacitors. Nano Energy 11, 687–696 (2015)
CrossRef Google scholar
[15]
Zhao, D., Liu, H., Wu, X.: Bi-interface induced multi-active MCo2O4@ MCo2S4@PPy (M=Ni, Zn) sandwich structure for energy storage and electrocatalysis. Nano Energy 57, 363–370 (2019)
CrossRef Google scholar
[16]
Gao, X., Zhang, Y., Huang, M., Li, F., Hua, C., Yu, L., Zheng, H.: Facile synthesis of Co3O4@ NiCo2O4 core–shell arrays on Ni foam for advanced binder-free supercapacitor electrodes. Ceram. Int. 40(10), 15641–15646 (2014)
CrossRef Google scholar
[17]
Gu, Z., Guo, J., Zhao, X., Wang, X., Xie, D., Sun, Z., Zhao, C., Liang, H., Li, W., Wu, X.: High-ionicity fluorophosphate lattice via aliovalent substitution as advanced cathode materials in sodium-ion batteries. InfoMat 3(6), 694–704 (2021)
CrossRef Google scholar
[18]
Dai, M., Zhao, D., Wu, X.: Research progress on transition metal oxide based electrode materials for asymmetric hybrid capacitors. Chin. Chem. Lett. 31(9), 2177–2188 (2020)
CrossRef Google scholar
[19]
Liu, H., Dai, M., Zhao, D., Wu, X., Wang, B.: Realizing superior electrochemical performance for asymmetric capacitors through tailoring electrode architectures. ACS Appl. Energy Mater. 3(7), 7004–7010 (2020)
CrossRef Google scholar
[20]
Dai, M., Zhao, D., Liu, H., Tong, Y., Hu, P., Wu, X.: Nanostructure and doping engineering of ZnCoP for high performance electrolysis of water. Mater. Today Energy 16, 100412 (2020)
CrossRef Google scholar
[21]
Zhu, X., Meng, F., Zhang, Q., Xue, L., Zhu, H., Lan, S., Liu, Q., Zhao, J., Zhuang, Y., Guo, Q., Liu, B., Gu, L., Lu, X., Ren, Y., Xia, H.: LiMnO2 cathode stabilized by interfacial orbital ordering for sustainable lithium-ion batteries. Nat. Sustain. 4(5), 392–401 (2021)
CrossRef Google scholar
[22]
Xing, L., Dong, Y., Hu, F., Wu, X., Umar, A.: Co3O4 nanowire@ NiO nanosheet arrays for high performance asymmetric supercapacitors. Dalton Trans. (Cambridge, England) 47(16), 5687–5694 (2018)
CrossRef Google scholar
[23]
Tong, Y., Liu, H., Dai, M., Xiao, L., Wu, X.: Metal-organic framework-derived Co3O4/PPy bifunctional electrocatalysts for efficient overall water splitting. Chin. Chem. Lett. 31(9), 2295–2299 (2020)
CrossRef Google scholar
[24]
Xing, L., Dong, Y., Wu, X.: Hierarchical Co3O4@ Co9S8 nanowall structures assembled by many nanosheets for high performance asymmetric supercapacitors. RSC Adv. 8(49), 28172–28178 (2018)
CrossRef Google scholar
[25]
Hu, P., Liu, Y., Liu, H., Xiang, W., Liu, B.: MnCo2O4 nanosheet/ NiCo2S4 nanowire heterostructures as cathode materials for capacitors. ACS Appl. Nano Mater. 4(2), 2183–2189 (2021)
CrossRef Google scholar
[26]
Tong, Y., Dai, M., Xing, L., Liu, H., Sun, W., Wu, X.: Asymmetric hybrid capacitor based on NiCo2O4 nanosheets electrode. Wuli Huaxue Xuebao 36(7), 1903046 (2020)
CrossRef Google scholar
[27]
Zhao, D., Dai, M., Liu, H., Chen, K., Zhu, X., Xue, D., Wu, X., Liu, J.: Sulfur induced interface engineering of hybrid NiCo2O4@ NiMo2S4 structure for overall water splitting and flexible hybrid energy storage. Adv. Mater. Interfaces 6(21), 1901308 (2019)
CrossRef Google scholar
[28]
Lu, Y., Deng, B., Liu, Y., Wang, J., Tu, Z., Lu, J., Xiao, X., Xu, G.: Nanostructured Co3O4 for achieving high-performance supercapacitor. Mater. Lett. 285, 129101 (2021)
CrossRef Google scholar
[29]
Sivakumar, P., Jana, M., Kota, M., Jung, M.G., Gedanken, A., Park, H.S.: Controllable synthesis of nanohorn-like architectured cobalt oxide for hybrid supercapacitor application. J. Power Sources 402, 147–156 (2018)
CrossRef Google scholar
[30]
Zhao, D., Hu, F., Umar, A., Wu, X.: NiCo2O4 nanowires based flexible electrode materials for asymmetric supercapacitors. N. J. Chem. 42(9), 7399–7406 (2018)
CrossRef Google scholar
[31]
Zhang, H., Yan, B., Zhou, C., Wang, J., Duan, H., Zhang, D., Zhao, H.: MOF-derived hollow and porous Co3O4 nanocages for superior hybrid supercapacitor electrodes. Energy Fuels 35(20), 16925–16932 (2021)
CrossRef Google scholar
[32]
Liang, S., Wang, H., Li, Y., Qin, H., Luo, Z., Chen, L.: Ternary synergistic transition metal oxalate 2D porous thin sheets assembled by 3D nanoflake array with high performance for supercapattery. Appl. Surf. Sci. 567, 150809 (2021)
CrossRef Google scholar
[33]
Jiang, Y., Chen, L., Zhang, H., Zhang, Q., Chen, W., Zhu, J., Song, D.: Two-dimensional Co3O4 thin sheets assembled by 3D interconnected nanoflake array framework structures with enhanced supercapacitor performance derived from coordination complexes. Chem. Eng. J. 292, 1–12 (2016)
CrossRef Google scholar
[34]
Song, D., Zhu, J., Li, J., Pu, T., Huang, B., Zhao, C., Xie, L., Chen, L.: Free-standing two-dimensional mesoporous ZnCo2O4 thin sheets consisting of 3D ultrathin nanoflake array frameworks for high performance asymmetric supercapacitor. Electrochim. Acta 257, 455–464 (2017)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 The Author(s) 2022
AI Summary AI Mindmap
PDF(1954 KB)

677

Accesses

4

Citations

22

Altmetric

Detail

Sections
Recommended

/