Ultra-thin broadband solar absorber based on stadium-shaped silicon nanowire arrays

Seyedeh Leila Mortazavifar, Mohammad Reza Salehi, Mojtaba Shahraki, Ebrahim Abiri

PDF(1211 KB)
PDF(1211 KB)
Front. Optoelectron. ›› 2022, Vol. 15 ›› Issue (1) : 6. DOI: 10.1007/s12200-022-00010-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Ultra-thin broadband solar absorber based on stadium-shaped silicon nanowire arrays

Author information +
History +

Abstract

This paper investigates how the dimensions and arrangements of stadium silicon nanowires (NWs) affect their absorption properties. Compared to other NWs, the structure proposed here has a simple geometry, while its absorption rate is comparable to that of very complex structures. It is shown that changing the cross-section of NW from circular (or rectangular) to a stadium shape leads to change in the position and the number of absorption modes of the NW. In a special case, these modes result in the maximum absorption inside NWs. Another method used in this paper to attain broadband absorption is utilization of multiple NWs which have different geometries. However, the maximum enhancement is achieved using non-close packed NW. These structures can support more cavity modes, while NW scattering leads to broadening of the absorption spectra. All the structures are optimized using particle swarm optimizations. Using these optimized structures, it is viable to enhance the absorption by solar cells without introducing more absorbent materials.

Graphical abstract

Keywords

Ultra-thin solar cells (SCs) / Light trapping / Stadium silicon nanowire (NW) / Optical resonators / Diffraction

Cite this article

Download citation ▾
Seyedeh Leila Mortazavifar, Mohammad Reza Salehi, Mojtaba Shahraki, Ebrahim Abiri. Ultra-thin broadband solar absorber based on stadium-shaped silicon nanowire arrays. Front. Optoelectron., 2022, 15(1): 6 https://doi.org/10.1007/s12200-022-00010-x

References

[1]
Samajdar, D.: Light-trapping strategy for PEDOT:PSS/c-Si nanopyramid based hybrid solar cells embedded with metallic nanoparticles. Sol. Energy 190, 278–285 (2019)
CrossRef Google scholar
[2]
Richardson, B.J., Zhu, L., Yu, Q.: Design and development of plasmonic nanostructured electrodes for ITO-free organic photovoltaic cells on rigid and highly flexible substrates. Nanotechnology 28(16), 165401 (2017)
CrossRef Google scholar
[3]
Mahani, F.F., Mokhtari, A.: Enhancement of ITO-free organic solar cells utilizing plasmonic nanohole electrodes. In: 7th International Conference on Nanotechnology (ICN) (2017)
[4]
Makableh, Y.F., Al-Fandi, M., Khasawneh, M., Tavares, C.J.: Comprehensive design analysis of ZnO anti-reflection nanostructures for Si solar cells. Superlattices Microstruct. 124, 1–9 (2018)
CrossRef Google scholar
[5]
Mokkapati, S., Beck, F., Catchpole, K.: Analytical approach for design of blazed dielectric gratings for light trapping in solar cells. J. Phys. D Appl. Phys. 44(5), 055103 (2011)
CrossRef Google scholar
[6]
Luo, Z., Zhang, X.A., Evans, B.A., Chang, C.H.: Active periodic magnetic nanostructures with high aspect ratio and ultrahigh pillar density. ACS Appl. Mater. Interfaces 12(9), 11135–11143 (2020)
CrossRef Google scholar
[7]
Garnett, E., Yang, P.: Light trapping in silicon nanowire solar cells. Nano Lett. 10(3), 1082–1087 (2010)
CrossRef Google scholar
[8]
Mortazavifar, S.L., Salehi, M.R., Shahraki, M., Abiri, E.: Optimization of light absorption in ultrathin elliptical silicon nanowire arrays for solar cell applications. J. Mod. Optics 1–13 (2022)
CrossRef Google scholar
[9]
Xu, Z., Huangfu, H., Li, X., Qiao, H., Guo, W., Guo, J., Wang, H.: Role of nanocone and nanohemisphere arrays in improving light trapping of thin film solar cells. Opt. Commun. 377, 104–109 (2016)
CrossRef Google scholar
[10]
Kumar, V., Gupta, D., Kumar, R.: Optimizing photovoltaic charge generation of hybrid heterojunction core–shell silicon nanowire arrays: an FDTD analysis. ACS Omega 3(4), 4123–4128 (2018)
CrossRef Google scholar
[11]
Eaton, S.W., Fu, A., Wong, A.B., Ning, C.Z., Yang, P.: Semiconductor nanowire lasers. Nat. Rev. Mater. 1(6), 16028 (2016)
CrossRef Google scholar
[12]
Zhou, K., Zhao, Z., Pan, L., Wang, Z.: Silicon nanowire pH sensors fabricated with CMOS compatible sidewall mask technology. Sens. Actuators B Chem. 279, 111–121 (2019)
CrossRef Google scholar
[13]
Nami, M., Stricklin, I.E., DaVico, K.M., Mishkat-Ul-Masabih, S., Rishinaramangalam, A.K., Brueck, S.R.J., Brener, I., Feezell, D.F.: Carrier dynamics and electro-optical characterization of high-performance GaN/InGaN core-shell nanowire light-emitting diodes. Sci. Rep. 8(1), 501 (2018)
CrossRef Google scholar
[14]
Manning, H.G., da Rocha, C.G., Callaghan, C.O., Ferreira, M.S., Boland, J.J.: The electro-optical performance of silver nanowire networks. Sci. Rep. 9(1), 11550 (2019)
CrossRef Google scholar
[15]
Kuznetsov, A.I., Miroshnichenko, A.E., Brongersma, M.L., Kivshar, Y.S., Luk’yanchuk, B.: Optically resonant dielectric nanostructures. Science 354(6314), aag2472 (2016)
CrossRef Google scholar
[16]
Cao, L., Fan, P., Vasudev, A.P., White, J.S., Yu, Z., Cai, W., Schuller, J.A., Fan, S., Brongersma, M.L.: Semiconductor nanowire optical antenna solar absorbers. Nano Lett. 10(2), 439–445 (2010)
CrossRef Google scholar
[17]
Kim, S.K., Zhang, X., Hill, D.J., Song, K.D., Park, J.S., Park, H.G., Cahoon, J.F.: Doubling absorption in nanowire solar cells with dielectric shell optical antennas. Nano Lett. 15(1), 753–758 (2015)
CrossRef Google scholar
[18]
Zhang, C., Yang, Z., Shang, A., Wu, S., Zhan, Y., Li, X.: Improved optical absorption of silicon single-nanowire solar cells by offaxial core/shell design. Nano Energy 17, 233–240 (2015)
CrossRef Google scholar
[19]
Mortazavifar, S.L., Salehi, M.R., Shahraki, M., Abiri, E.: Absorption improvement of a-Si/c-Si rectangular nanowire arrays in ultrathin solar cells. J. Photonics Energy 11(1), 014502 (2021)
CrossRef Google scholar
[20]
Kelzenberg, M.D., Boettcher, S.W., Petykiewicz, J.A., Turner-Evans, D.B., Putnam, M.C., Warren, E.L., Spurgeon, J.M., Briggs, R.M., Lewis, N.S., Atwater, H.A.: Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater. 9(3), 239–244 (2010)
CrossRef Google scholar
[21]
Lee, H.C., Na, J.Y., Moon, Y.J., Park, J.S., Ee, H.S., Park, H.G., Kim, S.K.: Three-dimensional grating nanowires for enhanced light trapping. Opt. Lett. 41(7), 1578–1581 (2016)
CrossRef Google scholar
[22]
Park, J.S., Kim, K.H., Hwang, M.S., Zhang, X., Lee, J.M., Kim, J., Song, K.D., No, Y.S., Jeong, K.Y., Cahoon, J.F., Kim, S.K., Park, H.G.: Enhancement of light absorption in silicon nanowire photovoltaic devices with dielectric and metallic grating structures. Nano Lett. 17(12), 7731–7736 (2017)
CrossRef Google scholar
[23]
Urakseev, M., Vazhdaev, K., Sagadeev, A.: Optoelectronic Devices with Diffraction of Light on a Phase Grating. In: 2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon) IEEE, 1–6 (2018)
CrossRef Google scholar
[24]
Martínez, R.V., Martínez, J., Garcia, R.: Silicon nanowire circuits fabricated by AFM oxidation nanolithography. Nanotechnology 21(24), 245301 (2010)
CrossRef Google scholar
[25]
Jebril, S.: Synthesis and characterization of vertical and horizontal nanowires for functional device fabrication. Christian-Albrechts Universität Kiel (2009)
[26]
Wagner, R.S., Ellis, W.C.: Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4(5), 89–90 (1964)
CrossRef Google scholar
[27]
Yang, P., Yan, R., Fardy, M.: Semiconductor nanowire: what’s next? Nano Lett. 10(5), 1529–1536 (2010)
CrossRef Google scholar
[28]
Lu, W., Lieber, C.M.: Nanoelectronics from the bottom up. Nanoscience And Technology: A Collection of Reviews from Nature Journals, pp. 137–146, (2010)
CrossRef Google scholar
[29]
Yan, R., Gargas, D., Yang, P.: Nanowire photonics. Nat. Photonics 3(10), 569–576 (2009)
CrossRef Google scholar
[30]
Hochbaum, A.I., Yang, P.: Semiconductor nanowires for energy conversion. Chem. Rev. 110(1), 527–546 (2010)
CrossRef Google scholar
[31]
Huang, Y., Duan, X., Cui, Y., Lauhon, L.J., Kim, K.H., Lieber, C.M.: Logic gates and computation from assembled nanowire building blocks. Science 294(5545), 1313–1317 (2001)
CrossRef Google scholar
[32]
Smith, P.A., Nordquist, C.D., Jackson, T.N., Mayer, T.S., Martin, B.R., Mbindyo, J., Mallouk, T.E.: Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett. 77(9), 1399–1401 (2000)
CrossRef Google scholar
[33]
Jin, S., Whang, D., McAlpine, M.C., Friedman, R.S., Wu, Y., Lieber, C.M.: Scalable interconnection and integration of nanowire devices without registration. Nano Lett. 4(5), 915–919 (2004)
CrossRef Google scholar
[34]
Fan, Z., Ho, J.C., Jacobson, Z.A., Yerushalmi, R., Alley, R.L., Razavi, H., Javey, A.: Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett. 8(1), 20–25 (2008)
CrossRef Google scholar
[35]
Tsivion, D., Schvartzman, M., Popovitz-Biro, R., von Huth, P., Joselevich, E.: Guided growth of millimeter-long horizontal nanowires with controlled orientations. Science 333(6045), 1003–1007 (2011)
CrossRef Google scholar
[36]
Brönstrup, G., Leiterer, C., Jahr, N., Gutsche, C., Lysov, A., Regolin, I., Prost, W., Tegude, F.J., Fritzsche, W., Christiansen, S.: A precise optical determination of nanoscale diameters of semiconductor nanowires. Nanotechnology 22(38), 385201 (2011)
CrossRef Google scholar
[37]
Kim, S.K., Day, R.W., Cahoon, J.F., Kempa, T.J., Song, K.D., Park, H.G., Lieber, C.M.: Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design. Nano Lett. 12(9), 4971–4976 (2012)
CrossRef Google scholar
[38]
Yuan, X., Chen, X., Yan, X., Wei, W., Zhang, Y., Zhang, X.: Absorption-enhanced ultra-thin solar cells based on horizontally aligned p-i-n nanowire arrays. Nanomaterials (Basel, Switzerland) 10(6), 1111 (2020)
CrossRef Google scholar
[39]
Yan, X., Liu, H., Sibirev, N., Zhang, X., Ren, X.: Performance enhancement of ultra-thin nanowire array solar cells by bottom reflectivity engineering. Nanomaterials (Basel, Switzerland) 10(2), 184 (2020)
CrossRef Google scholar
[40]
Lee, Y.H., Ha, M., Song, I., Lee, J.H., Won, Y., Lim, S., Ko, H., Oh, J.H.: High-performance hybrid photovoltaics with efficient interfacial contacts between vertically aligned ZnO nanowire arrays and organic semiconductors. ACS Omega 4(6), 9996–10002 (2019)
CrossRef Google scholar
[41]
Akhmadaliev, C., Schmidt, B., Bischoff, L.: Defect induced formation of Co Si 2 nanowires by focused ion beam synthesis. Appl. Phys. Lett. 89(22), 223129 (2006)
CrossRef Google scholar
[42]
Minamisawa, R., Habicht, S., Buca, D., Carius, R., Trellenkamp, S., Bourdelle, K.K., Mantl, S.: Elastic strain and dopant activation in ion implanted strained Si nanowires. J. Appl. Phys. 108(12), 124908 (2010)
CrossRef Google scholar
[43]
Ou, X., Kögler, R., Wei, X., Mücklich, A., Wang, X., Skorupa, W., Facsko, S.: Fabrication of horizontal silicon nanowire arrays on insulator by ion irradiation. AIP Adv. 1(4), 042174 (2011)
CrossRef Google scholar
[44]
Liu, C., Di Falco, A., Molinari, D., Khan, Y., Ooi, B.S., Krauss, T.F., Fratalocchi, A.: Enhanced energy storage in chaotic optical resonators. Nat. Photonics 7(6), 473–478 (2013)
CrossRef Google scholar
[45]
Vodolazskaya, I.V., Eserkepov, A.V., Akhunzhanov, R.K., Tarasevich, Y.Y.: Effect of tunneling on the electrical conductivity of nanowire-based films: computer simulation within a core–shell model. J. Appl. Phys. 126(24), 244903 (2019)
CrossRef Google scholar
[46]
Park, H.G., Qian, F., Barrelet, C.J., Li, Y.: Microstadium single-nanowire laser. Appl. Phys. Lett. 91(25), 251115 (2007)
CrossRef Google scholar
[47]
Kim, J.H., Bum Kang, S., Yu, H.H., Kim, J., Ryu, J., Lee, J.W., Jin Choi, K., Kim, C.M., Yi, C.H.: Augmentation of absorption channels induced by wave-chaos effects in free-standing nanowire arrays. Opt. Express 28(16), 23569–23583 (2020)
CrossRef Google scholar
[48]
Hochbaum, A.I., Chen, R., Delgado, R.D., Liang, W., Garnett, E.C., Najarian, M., Majumdar, A., Yang, P.: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451(7175), 163–167 (2008)
CrossRef Google scholar
[49]
Rojo, M.M., Calero, O.C., Lopeandia, A.F., Rodriguez-Viejo, J., Martín-Gonzalez, M.: Review on measurement techniques of transport properties of nanowires. Nanoscale 5(23), 11526–11544 (2013)
CrossRef Google scholar
[50]
Yao, J., Yan, H., Lieber, C.M.: A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. Nat. Nanotechnol. 8(5), 329–335 (2013)
CrossRef Google scholar
[51]
Yerushalmi, R., Jacobson, Z.A., Ho, J.C., Fan, Z., Javey, A.: Large scale, highly ordered assembly of nanowire parallel arrays by differential roll printing. Appl. Phys. Lett. 91(20), 203104 (2007)
CrossRef Google scholar
[52]
Yu, G., Cao, A., Lieber, C.M.: Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nat. Nanotechnol. 2(6), 372–377 (2007)
CrossRef Google scholar
[53]
Li, C., Fobelets, K., Liu, C., Xue, C., Cheng, B., Wang, Q.: Agassisted lateral etching of Si nanowires and its application to nanowire transfer. Appl. Phys. Lett. 103(18), 183102 (2013)
CrossRef Google scholar
[54]
Zhang, D., Cheng, G., Wang, J., Zhang, C., Liu, Z., Zuo, Y., Zheng, J., Xue, C., Li, C., Cheng, B., Wang, Q.: Horizontal transfer of aligned Si nanowire arrays and their photoconductive performance. Nanoscale Res. Lett. 9(1), 661 (2014)
CrossRef Google scholar
[55]
Peng, K., Yan, Y., Gao, S., Zhu, J.: Dendrite-assisted growth of silicon nanowires in electroless metal deposition. Adv. Func. Mater. 13(2), 127–132 (2003)
CrossRef Google scholar
[56]
Ghoshal, T., Senthamaraikannan, R., Shaw, M.T., Holmes, J.D., Morris, M.A.: Fabrication of ordered, large scale, horizontally-aligned si nanowire arrays based on an in situ hard mask block copolymer approach. Adv. Mater. 26(8), 1207–1216 (2014)
CrossRef Google scholar
[57]
Bunimovich, L.: On ergodic properties of some billiards. Funct. Anal. Appl. 8, 254–255 (1974)
CrossRef Google scholar
[58]
Wojtkowski, M.: Principles for the design of billiards with nonvanishing Lyapunov exponents. Commun. Math. Phys. 105(3), 391–414 (1986)
CrossRef Google scholar
[59]
Donnay, V.J.: Using integrability to produce chaos: billiards with positive entropy. Commun. Math. Phys. 141(2), 225–257 (1991)
CrossRef Google scholar
[60]
Markarian, R., Kamphorst, S.O., de Carvalho S.P.: Chaotic properties of the elliptical stadium. arxiv preprint arxiv: chao-dyn/9501004 (1995)
[61]
Del Magno, G., Markarian, R.: Bernoulli elliptical stadia. Commun. Math. Phys. 233(2), 211–230 (2003)
CrossRef Google scholar
[62]
Lopac, V., Mrkonjić, I., Pavin, N., Radić, D.: Chaotic dynamics of the elliptical stadium billiard in the full parameter space. Physica D 217(1), 88–101 (2006)
CrossRef Google scholar
[63]
Lopac, V., Mrkonjić, I., Radić, D.: Chaotic dynamics and orbit stability in the parabolic oval billiard. Phys. Rev. E 66(3 3 Pt 2A), 036202 (2002)
CrossRef Google scholar
[64]
Stein, J., Stöckmann, H., Stoffregen, U.: Microwave studies of billiard Green functions and propagators. Phys. Rev. Lett. 75(1), 53–56 (1995)
CrossRef Google scholar
[65]
Stöckmann, H.J.: Quantum Chaos: an Introduction. American Association of Physics Teachers (2000)
CrossRef Google scholar
[66]
Sturmberg, B.C., Dossou, K.B., Botten, L.C., Asatryan, A.A., Poulton, C.G., McPhedran, R.C., de Sterke, C.M.: Optimizing photovoltaic charge generation of nanowire arrays: a simple semianalytic approach. ACS Photonics 1(8), 683–689 (2014)
CrossRef Google scholar
[67]
Gupta, A.K., Raman, A., Kumar, N.: Cylindrical nanowire-TFET with Core-Shell Channel architecture: design and investigation. Silicon 12, 1–8 (2019)
CrossRef Google scholar
[68]
Kempa, T.J., Cahoon, J.F., Kim, S.K., Day, R.W., Bell, D.C., Park, H.G., Lieber, C.M.: Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics. Proc. Natl. Acad. Sci. U.S.A. 109(5), 1407–1412 (2012)
CrossRef Google scholar
[69]
Brönstrup, G., Jahr, N., Leiterer, C., Csáki, A., Fritzsche, W., Christiansen, S.: Optical properties of individual silicon nanowires for photonic devices. ACS Nano 4(12), 7113–7122 (2010)
CrossRef Google scholar
[70]
Cao, L., Park, J.S., Fan, P., Clemens, B., Brongersma, M.L.: Resonant germanium nanoantenna photodetectors. Nano Lett. 10(4), 1229–1233 (2010)
CrossRef Google scholar
[71]
Kempa, T.J., Day, R.W., Kim, S.K., Park, H.G., Lieber, C.M.: Semiconductor nanowires: a platform for exploring limits and concepts for nano-enabled solar cells. Energy Environ. Sci. 6(3), 719–733 (2013)
CrossRef Google scholar
[72]
Kempa, T.J., Tian, B., Kim, D.R., Hu, J., Zheng, X., Lieber, C.M.: Single and tandem axial p-i-n nanowire photovoltaic devices. Nano Lett. 8(10), 3456–3460 (2008)
CrossRef Google scholar
[73]
Sze, S.M., Li, Y., Ng, K.K.: Physics of Semiconductor Devices. John Wiley & Sons (2021)
[74]
Mohammed, K.H.: Fabrication of horizontal silicon nanowires using a thin aluminum film as a catalyst. University of Arkansas (2011)
[75]
Rothman, A., Forsht, T., Danieli, Y., Popovitz-Biro, R., Rechav, K., Houben, L., Joselevich, E.: Guided growth of horizontal ZnS nanowires on flat and faceted sapphire surfaces. J. Phys. Chem. C 122(23), 12413–12420 (2018)
CrossRef Google scholar
[76]
Reut, G., Oksenberg, E., Popovitz-Biro, R., Rechav, K., Joselevich, E.: Guided growth of horizontal p-type ZnTe nanowires. J. Phys. Chem. C 120(30), 17087–17100 (2016)
CrossRef Google scholar
[77]
Wu, S., Yi, X., Tian, S., Zhang, S., Liu, Z., Wang, L., Wang, J., Li, J.: Understanding homoepitaxial growth of horizontal kinked GaN nanowires. Nanotechnology 32(9), 095606 (2021)
CrossRef Google scholar
[78]
Fan, P., Huang, K.C., Cao, L., Brongersma, M.L.: Redesigning photodetector electrodes as an optical antenna. Nano Lett. 13(2), 392–396 (2013)
CrossRef Google scholar
[79]
Tang, J., Huo, Z., Brittman, S., Gao, H., Yang, P.: Solution-processed core-shell nanowires for efficient photovoltaic cells. Nat. Nanotechnol. 6(9), 568–572 (2011)
CrossRef Google scholar
[80]
Tian, B., et al.: Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449(7164), 885–889 (2007)
CrossRef Google scholar
[81]
Zhang, X., Pinion, C.W., Christesen, J.D., Flynn, C.J., Celano, T.A., Cahoon, J.F.: Horizontal silicon nanowires with radial p–n junctions: a platform for unconventional solar cells. J. Phys. Chem. Lett. 4(12), 2002–2009 (2013)
CrossRef Google scholar
[82]
Song, K.D., Kempa, T.J., Park, H.G., Kim, S.K.: Laterally assembled nanowires for ultrathin broadband solar absorbers. Opt. Express 22(103, Suppl 3), A992–A1000 (2014)
CrossRef Google scholar
[83]
Palik, E.D.: Handbook of Optical Constants of Solids. Academic Press (1998)
[84]
Wang, P., Menon, R.: Optimization of generalized dielectric nanostructures for enhanced light trapping in thin-film photovoltaics via boosting the local density of optical states. Opt. Express 22(101, Suppl 1), A99–A110 (2014)
CrossRef Google scholar
[85]
Wang, B., Stevens, E., Leu, P.W.: Strong broadband absorption in GaAs nanocone and nanowire arrays for solar cells. Opt. Express 22(102 Suppl 2), A386–A395 (2014)
CrossRef Google scholar
[86]
Pomplun, J., Burger, S., Zschiedrich, L., Schmidt, F.: Adaptive finite element method for simulation of optical nano structures. Physica Status Solidi (b) 244(10), 3419–3434 (2007)
CrossRef Google scholar
[87]
Yu, P., Yao, Y., Wu, J., Niu, X., Rogach, A.L., Wang, Z.: Effects of plasmonic metal core-dielectric shell nanoparticles on the broadband light absorption enhancement in thin film solar cells. Sci. Rep. 7(1), 7696 (2017)
CrossRef Google scholar
[88]
Chang, R.K., Campillo, A.J.: Optical Processes in Microcavities. World Scientific (1996)
CrossRef Google scholar
[89]
Berry, M.V.: Regularity and chaos in classical mechanics, illustrated by three deformations of a circular ‘billiard.’ Eur. J. Phys. 2(2), 91–102 (1981)
CrossRef Google scholar
[90]
Söderström, K., Haug, F.J., Escarre, J., Cubero, O., Ballif, C.: Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler. Appl. Phys. Lett. 96(21), 213508 (2010)
CrossRef Google scholar
[91]
Kim, S.K., Song, K.D., Kempa, T.J., Day, R.W., Lieber, C.M., Park, H.G.: Design of nanowire optical cavities as efficient photon absorbers. ACS Nano 8(4), 3707–3714 (2014)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 The Author(s) 2022
AI Summary AI Mindmap
PDF(1211 KB)

Accesses

Citations

Detail

Sections
Recommended

/