Preface to the special issue on “Recent Advances in Optical Metasurfaces”

Cheng ZHANG, Din-Ping TSAI

PDF(130 KB)
PDF(130 KB)
Front. Optoelectron. ›› 2021, Vol. 14 ›› Issue (2) : 131-133. DOI: 10.1007/s12200-021-1251-z
EDITORIAL
EDITORIAL

Preface to the special issue on “Recent Advances in Optical Metasurfaces”

Author information +
History +

Cite this article

Download citation ▾
Cheng ZHANG, Din-Ping TSAI. Preface to the special issue on “Recent Advances in Optical Metasurfaces”. Front. Optoelectron., 2021, 14(2): 131‒133 https://doi.org/10.1007/s12200-021-1251-z

References

[1]
Yu N, Capasso F. Flat optics with designer metasurfaces. Nature Materials, 2014, 13(2): 139–150
CrossRef Pubmed Google scholar
[2]
Li G X, Zhang S, Zentgraf T. Nonlinear photonic metasurfaces. Nature Reviews. Materials, 2017, 2(5): 17010
CrossRef Google scholar
[3]
Devlin R C, Ambrosio A, Rubin N A, Mueller J P B, Capasso F. Arbitrary spin-to-orbital angular momentum conversion of light. Science, 2017, 358(6365): 896–901
CrossRef Pubmed Google scholar
[4]
Park J, Jeong B G, Kim S I, Lee D, Kim J, Shin C, Lee C B, Otsuka T, Kyoung J, Kim S, Yang K Y, Park Y Y, Lee J, Hwang I, Jang J, Song S H, Brongersma M L, Ha K, Hwang S W, Choo H, Choi B L. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. Nature Nanotechnology, 2021, 16(1): 69–76
CrossRef Pubmed Google scholar
[5]
Li S Q, Xu X, Maruthiyodan Veetil R, Valuckas V, Paniagua-Domínguez R, Kuznetsov A I. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science, 2019, 364(6445): 1087–1090
CrossRef Pubmed Google scholar
[6]
Lin R J, Su V C, Wang S, Chen M K, Chung T L, Chen Y H, Kuo H Y, Chen J W, Chen J, Huang Y T, Wang J H, Chu C H, Wu P C, Li T, Wang Z, Zhu S, Tsai D P. Achromatic metalens array for full-colour light-field imaging. Nature Nanotechnology, 2019, 14(3): 227–231
CrossRef Pubmed Google scholar
[7]
Das Gupta T, Martin-Monier L, Yan W, Le Bris A, Nguyen-Dang T, Page A G, Ho K T, Yesilköy F, Altug H, Qu Y, Sorin F. Self-assembly of nanostructured glass metasurfaces via templated fluid instabilities. Nature Nanotechnology, 2019, 14(4): 320–327
CrossRef Pubmed Google scholar
[8]
Wu Y K R, Hollowell A E, Zhang C, Guo L J. Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit. Scientific Reports, 2013, 3(1): 1194
CrossRef Pubmed Google scholar
[9]
Kita D M, Miranda B, Favela D, Bono D, Michon J, Lin H, Gu T, Hu J. High-performance and scalable on-chip digital Fourier transform spectroscopy. Nature Communications, 2018, 9(1): 4405
CrossRef Pubmed Google scholar
[10]
Pahlevaninezhad H, Khorasaninejad M, Huang Y W, Shi Z, Hariri L P, Adams D C, Ding V, Zhu A, Qiu C W, Capasso F, Suter M J. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nature Photonics, 2018, 12(9): 540–547
CrossRef Pubmed Google scholar
[11]
Li L, Liu Z, Ren X, Wang S, Su V C, Chen M K, Chu C H, Kuo H Y, Liu B, Zang W, Guo G, Zhang L, Wang Z, Zhu S, Tsai D P. Metalens-array-based high-dimensional and multiphoton quantum source. Science, 2020, 368(6498): 1487–1490
CrossRef Pubmed Google scholar
[12]
Zhang C, Divitt S, Fan Q B, Zhu W Q, Agrawal A, Lu Y Q, Xu T, Lezec H J. Low-loss metasurface optics down to the deep ultraviolet region. Light, Science & Applications, 2020, 9(1): 55
CrossRef Google scholar
[13]
Zhang C, Pfeiffer C, Jang T, Ray V, Junda M, Uprety P, Podraza N, Grbic A, Guo L J. Breaking Malus’ law: highly efficient, broadband, and angular robust asymmetric light transmitting metasurface. Laser & Photonics Reviews, 2016, 10(5): 791–798
CrossRef Google scholar
[14]
Zhang L, Ding J, Zheng H, An S, Lin H, Zheng B, Du Q, Yin G, Michon J, Zhang Y, Fang Z, Shalaginov M Y, Deng L, Gu T, Zhang H, Hu J. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics. Nature Communications, 2018, 9(1): 1481
CrossRef Pubmed Google scholar
[15]
Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science, 2016, 352(6290): 1190–1194
CrossRef Pubmed Google scholar
[16]
Zang X, Yao B, Chen L, Xie J, Guo X, Balakin A, Shkurinov A, Zhuang S. Metasurfaces for manipulating terahertz waves. Light: Advanced Manufacturing, 2021, doi:10.37188/lam.2021.010
CrossRef Google scholar
[17]
Divitt S, Zhu W, Zhang C, Lezec H J, Agrawal A. Ultrafast optical pulse shaping using dielectric metasurfaces. Science, 2019, 364(6443): 890–894
CrossRef Pubmed Google scholar
[18]
Chen W T, Zhu A Y, Capasso F. Flat optics with dispersion-engineered metasurfaces. Nature Reviews, Materials, 2020, 5(8): 604–620
CrossRef Google scholar
[19]
Liu M, Zhu W, Huo P, Feng L, Song M, Zhang C, Chen L, Lezec H J, Lu Y, Agrawal A, Xu T. Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states. Light, Science & Applications, 2021, 10(1): 107
CrossRef Pubmed Google scholar
[20]
Fan Q, Liu M, Zhang C, Zhu W, Wang Y, Lin P, Yan F, Chen L, Lezec H J, Lu Y, Agrawal A, Xu T. Independent amplitude control of arbitrary orthogonal states of polarization via dielectric metasurfaces. Physical Review Letters, 2020, 125(26): 267402
CrossRef Pubmed Google scholar
[21]
Shaltout A M, Shalaev V M, Brongersma M L. Spatiotemporal light control with active metasurfaces. Science, 2019, 364(6441): eaat3100
CrossRef Pubmed Google scholar
[22]
Qiu Y C, Tang S W, Cai T, Xu H X, Ding F. Fundamentals and applications of spin-decoupled Pancharatnam−Berry metasurfaces. Frontiers of Optoelectronics, 2021, 14(2): 134–147
CrossRef Google scholar
[23]
Xiong Z F, Chen W J, Wang Z R, Xu J, Chen Y T. Finite element modeling of electromagnetic properties in photonic bianisotropic structures. Frontiers of Optoelectronics, 2021, 14(2): 148–153
CrossRef Google scholar
[24]
Bi Y, Huang L L, Li X W, Wang Y T. Magnetically controllable metasurface and its application. Frontiers of Optoelectronics, 2021, 14(2): 154–169
CrossRef Google scholar
[25]
Fu X, Liang H W, Li J T. Metalenses: from design principles to functional applications. Frontiers of Optoelectronics, 2021, 14(2): 170–186
CrossRef Google scholar
[26]
Gandhi C, Ramesh Babu P, Senthilnathan K.Ultra-thin polarization independent broadband terahertz metamaterial absorber. Frontiers of Optoelectronics, 2021, doi: 10.1007/s12200-021-1223-3
[27]
Wan L, Pan D P, Feng T H, Liu W P, Potapov A A. A review of dielectric optical metasurfaces for spatial differentiation and edge detection. Frontiers of Optoelectronics, 2021, 14(2): 187–200
CrossRef Google scholar
[28]
Liu C Y, Li Y F, Feng X, Zhang X X, Han J G, Zhang W L. Dual non-diffractive terahertz beam generators based on all-dielectric metasurface. Frontiers of Optoelectronics, 2021, 14(2): 201–210
CrossRef Google scholar
[29]
Ye Z L, Yang M Y, Zhu L, Chen P Y. PTX-symmetric metasurfaces for sensing applications. Frontiers of Optoelectronics, 2021, 14(2): 211–220
CrossRef Google scholar
[30]
Ren K, Zhang Y, Ren X B, He Y M, Han Q. Polarization-sensitive and active controllable electromagnetically induced transparency in U-shaped terahertz metamaterials. Frontiers of Optoelectronics, 2021, 14(2): 221–228
CrossRef Google scholar
[31]
Oh D K, Lee T, Ko B, Badloe T, Ok J G, Rho J. Nanoimprint lithography for high-throughput fabrication of metasurfaces. Frontiers of Optoelectronics, 2021, 14(2): 229–251
CrossRef Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(130 KB)

Accesses

Citations

Detail

Sections
Recommended

/