Oxide perovskite Ba2AgIO6 wafers for X-ray detection

Longbo YANG, Jincong PANG, Zhifang TAN, Qi XIAO, Tong JIN, Jiajun LUO, Guangda NIU, Jiang TANG

PDF(1570 KB)
PDF(1570 KB)
Front. Optoelectron. ›› 2021, Vol. 14 ›› Issue (4) : 473-481. DOI: 10.1007/s12200-021-1236-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Oxide perovskite Ba2AgIO6 wafers for X-ray detection

Author information +
History +

Abstract

X-ray detection is of great significance in biomedical, nondestructive, and scientific research. Lead halide perovskites have recently emerged as one of the most promising materials for direct X-ray detection. However, the lead toxicity remains a worrisome concern for further commercial application. Great efforts have been made to search for lead-free perovskites with similar optoelectronic properties. Here, we present a lead-free oxide double perovskite material Ba2AgIO6 for X-ray detection. The lead-free, all-inorganic nature, as well as the high density of Ba2AgIO6, promises excellent prospects in X-ray applications. By employing the hydrothermal method, we successfully synthesized highly crystalline Ba2AgIO6 powder with pure phase. Furthermore, we prepared Ba2AgIO6 wafers through isostatic pressure and built X-ray detectors with Au/Ba2AgIO6 wafer/Au photoconductive structure. The as-prepared X-ray detectors showed a sensitivity of 18.9 μC/(Gyair·cm2) at 5 V/mm, similar to commercial α-Se detectors showcasing their advantages for X-ray detection.

Graphical abstract

Keywords

oxide double perovskite / lead-free / X-ray detection

Cite this article

Download citation ▾
Longbo YANG, Jincong PANG, Zhifang TAN, Qi XIAO, Tong JIN, Jiajun LUO, Guangda NIU, Jiang TANG. Oxide perovskite Ba2AgIO6 wafers for X-ray detection. Front. Optoelectron., 2021, 14(4): 473‒481 https://doi.org/10.1007/s12200-021-1236-y

References

[1]
Yaffe M J, Rowlands J A. X-ray detectors for digital radiography. Physics in Medicine and Biology, 1997, 42(1): 1–39
CrossRef Pubmed Google scholar
[2]
Sakdinawat A, Attwood D. Nanoscale X-ray imaging. Nature Photonics, 2010, 4(12): 840–848
CrossRef Google scholar
[3]
Tan Z, Pang J, Niu G, Yuan J H, Xue K H, Miao X, Tao W, Zhu H, Li Z, Zhao H, Du X, Tang J. Tailoring the electron and hole dimensionality to achieve efficient and stable metal halide perovskite scintillators. Nanophotonics, 2021, 10(8): 2249–2256
CrossRef Google scholar
[4]
Heiss W, Brabec C. Perovskites target X-ray detection. Nature Photonics, 2016, 10(5): 288–289
CrossRef Google scholar
[5]
Yakunin S, Sytnyk M, Kriegner D, Shrestha S, Richter M, Matt G J, Azimi H, Brabec C J, Stangl J, Kovalenko M V, Heiss W. Detection of X-ray photons by solution-processed lead halide perovskites. Nature Photonics, 2015, 9(7): 444–449
CrossRef Pubmed Google scholar
[6]
Wei W, Zhang Y, Xu Q, Wei H, Fang Y, Wang Q, Deng Y, Li T, Gruverman A, Cao L, Huang J. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nature Photonics, 2017, 11(5): 315–321
CrossRef Google scholar
[7]
Shrestha S, Fischer R, Matt G J, Feldner P, Michel T, Osvet A, Levchuk I, Merle B, Golkar S, Chen H, Tedde S F, Schmidt O, Hock R, Rührig M, Göken M, Heiss W, Anton G, Brabec C J. High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers. Nature Photonics, 2017, 11(7): 436–440
CrossRef Google scholar
[8]
Liu Y, Zhang Y, Zhu X, Feng J, Spanopoulos I, Ke W, He Y, Ren X, Yang Z, Xiao F, Zhao K, Kanatzidis M, Liu S F. Triple-cation and mixed-halide perovskite single crystal for high-performance X-ray imaging. Advanced Materials, 2021, 33(8): e2006010
CrossRef Pubmed Google scholar
[9]
European Union. Directive 2011/65/EU of the European Parliament and of the Council on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment. 2002
[10]
Luo J, Li S, Wu H, Zhou Y, Li Y, Liu J, Li J, Li K, Yi F, Niu G, Tang J. Cs2AgInCl6 double perovskite single crystals: parity forbidden transitions and their application for sensitive and fast UV photodetectors. ACS Photonics, 2018, 5(2): 398–405
CrossRef Google scholar
[11]
Li J, Tan Z, Hu M, Chen C, Luo J, Li S, Gao L, Xiao Z, Niu G, Tang J. Antimony doped Cs2SnCl6 with bright and stable emission. Frontiers of Optoelectronics, 2019, 12(4): 352–364
CrossRef Google scholar
[12]
Luo J, Wang X, Li S, Liu J, Guo Y, Niu G, Yao L, Fu Y, Gao L, Dong Q, Zhao C, Leng M, Ma F, Liang W, Wang L, Jin S, Han J, Zhang L, Etheridge J, Wang J, Yan Y, Sargent E H, Tang J. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 2018, 563(7732): 541–545
CrossRef Pubmed Google scholar
[13]
Pan W, Wu H, Luo J, Deng Z, Ge C, Chen C, Jiang X, Yin W, Niu G, Zhu L, Yin L, Zhou Y, Xie Q, Ke X, Sui M, Tang J. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nature Photonics, 2017, 11(11): 726–732
CrossRef Google scholar
[14]
Volonakis G, Sakai N, Snaith H J, Giustino F. Oxide analogs of halide perovskites and the new semiconductor Ba2AgIO6. Journal of Physical Chemistry Letters, 2019, 10(8): 1722–1728
CrossRef Pubmed Google scholar
[15]
Yuan Y, Huang J. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Accounts of Chemical Research, 2016, 49(2): 286–293
CrossRef Pubmed Google scholar
[16]
Shao Y, Fang Y, Li T, Wang Q, Dong Q, Deng Y, Yuan Y, Wei H, Wang M, Gruverman A, Shield J, Huang J. Grain boundary dominated ion migration in polycrystalline organic-inorganic halide perovskite films. Energy & Environmental Science, 2016, 9(5): 1752–1759
CrossRef Google scholar
[17]
Sultana A, Wronski M M, Karim K S, Rowlands J A. Digital X-ray imaging using avalanche α-Se photoconductor. IEEE Sensors Journal, 2010, 10(2): 347–352
CrossRef Google scholar
[18]
Berger M J, Hubbell J H, Seltzer S M, Chang J, Coursey J S, Sukumar R, Zucker D S, Olsen K. XCOM: Photon Cross Sections Database: NIST Standard Reference Database 8 (NIST, 2013)
[19]
Wei H, Fang Y, Mulligan P, Chuirazzi W, Fang H H, Wang C, Ecker B R, Gao Y, Loi M A, Cao L, Huang J. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nature Photonics, 2016, 10(5): 333–339
CrossRef Google scholar
[20]
Toney J E, Schlesinger T E, James R B. Optimal bandgap variants of Cd1−xZnxTe for high-resolution X-ray and gamma-ray spectroscopy. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 428(1): 14–24
CrossRef Google scholar
[21]
Zheng W, Pang W, Meng G. Hydrothermal synthesis and characterization of perovskite-type Ba2SbMO6 (M=In, Y, Nd) oxides. Materials Letters, 1998, 37(4–5): 276–280
CrossRef Google scholar
[22]
Tie S, Zhao W, Xin D, Zhang M, Long J, Chen Q, Zheng X, Zhu J, Zhang W H. Robust fabrication of hybrid lead-free perovskite pellets for stable X-ray detectors with low detection limit. Advanced Materials, 2020, 32(31): e2001981
CrossRef Pubmed Google scholar
[23]
Kim Y C, Kim K H, Son D Y, Jeong D N, Seo J Y, Choi Y S, Han I T, Lee S Y, Park N G. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature, 2017, 550(7674): 87–91
CrossRef Pubmed Google scholar
[24]
Martin J E. Radiation Detection and Measurement. New York: Wiley, 1989
[25]
Devanathan R, Corrales L R, Gao F, Weber W J. Signal variance in gamma-ray detectors—a review. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 565(2): 637–649
CrossRef Google scholar
[26]
Fraboni B, Ciavatti A, Merlo F, Pasquini L, Cavallini A, Quaranta A, Bonfiglio A, Fraleoni-Morgera A. Organic semiconducting single crystals as next generation of low-cost, room-temperature electrical X-ray detectors. Advanced Materials, 2012, 24(17): 2289–2293
CrossRef Pubmed Google scholar
[27]
Pan W, Yang B, Niu G, Xue K H, Du X, Yin L, Zhang M, Wu H, Miao X S, Tang J. Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection. Advanced Materials, 2019, 31(44): e1904405
CrossRef Pubmed Google scholar
[28]
Xia M, Yuan J, Niu G, Du X, Yin L, Pan W, Luo J, Li Z, Zhao H, Xue K, Miao X, Tang J. Unveiling the structural descriptor of A3B2X9 perovskite derivatives toward X-Ray detectors with low detection limit and high stability. Advanced Functional Materials, 2020, 30(24): 1910648
CrossRef Google scholar
[29]
Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, de Arquer F P G, Gatti F, Koppens F H L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nature Nanotechnology, 2012, 7(6): 363–368
CrossRef Pubmed Google scholar

Acknowledgements

This work was financially supported by the National Postdoctoral Program for Innovative Talent (No. BX20200142), the National Natural Science Foundation of China (Grant Nos. 61725401, 5171101030, and 51761145048), the National Key R&D Program of China (Nos. 2016YFB0700702, 2016YFA0204000, and 2016YFB0201204), the HUST Key Innovation Team for Interdisciplinary Promotion (No. 2016JCTD111), and China Postdoctoral Science Foundation (Nos. 2020M62004075 and 2020M62005089). The authors from HUST thank the Analytical and Testing Center of HUST and the facility support of the Center for Nanoscale Characterization and Devices, WNLO. We also thank Prof. Guangzu Zhang for providing the isostatic pressing machine.

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(1570 KB)

Accesses

Citations

Detail

Sections
Recommended

/