Material exploration via designing spatial arrangement of octahedral units: a case study of lead halide perovskites
Pengfei FU, Sanlue HU, Jiang TANG, Zewen XIAO
Material exploration via designing spatial arrangement of octahedral units: a case study of lead halide perovskites
Halide perovskites have attracted tremendous attention as semiconducting materials for various optoelectronic applications. The functional metal-halide octahedral units and their spatial arrangements play a key role in the optoelectronic properties of these materials. At present, most of the efforts for material exploration focus on substituting the constituent elements of functional octahedral units, whereas designing the spatial arrangement of the functional units has received relatively little consideration. In this work, via a global structure search based on density functional theory (DFT), we discovered a metastable three-dimensional honeycomb-like perovskite structure with the functional octahedral units arranged through mixed edge- and corner-sharing. We experimentally confirmed that the honeycomb-like perovskite structure can be stabilized by divalent molecular cations with suitable size and shape, such as 2,2′-bisimidazole (BIM). DFT calculations and experimental characterizations revealed that the honeycomb-like perovskite with the formula of BIMPb2I6, synthesized through a solution process, exhibits high electronic dimensionality, a direct allowed bandgap of 2.1 eV, small effective masses for both electrons and holes, and high optical absorption coefficients, which indicates a significant potential for optoelectronic applications. The employed combination of DFT and experimental study provides an exemplary approach to explore prospective optoelectronic semiconductors via spatially arranging functional units.
lead halide perovskite / electronic dimensionality / functional octahedral units / optoelectronic properties / photodetector
[1] |
Kim J Y, Lee J W, Jung H S, Shin H, Park N G. High-efficiency perovskite solar cells. Chemical Reviews, 2020, 120(15): 7867–7918
CrossRef
Pubmed
Google scholar
|
[2] |
Jena A K, Kulkarni A, Miyasaka T. Halide perovskite photovoltaics: background, status, and future prospects. Chemical Reviews, 2019, 119(5): 3036–3103
CrossRef
Pubmed
Google scholar
|
[3] |
Yu X, Tsao H N, Zhang Z, Gao P. Miscellaneous and perspicacious: hybrid halide perovskite materials based photodetectors and sensors. Advanced Optical Materials, 2020, 8(21): 2001095
CrossRef
Google scholar
|
[4] |
Fang Y, Dong Q, Shao Y, Yuan Y, Huang J. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nature Photonics, 2015, 9(10): 679–686
CrossRef
Google scholar
|
[5] |
Wang H P, Li S, Liu X, Shi Z, Fang X, He J H. Low-dimensional metal halide perovskite photodetectors. Advanced Materials, 2021, 33(7): e2003309
CrossRef
Pubmed
Google scholar
|
[6] |
Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 2014, 9(9): 687–692
CrossRef
Pubmed
Google scholar
|
[7] |
Xu W, Hu Q, Bai S, Bao C, Miao Y, Yuan Z, Borzda T, Barker A J, Tyukalova E, Hu Z, Kawecki M, Wang H, Yan Z, Liu X, Shi X, Uvdal K, Fahlman M, Zhang W, Duchamp M, Liu J M, Petrozza A, Wang J, Liu L M, Huang W, Gao F. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nature Photonics, 2019, 13(6): 418–424
CrossRef
Google scholar
|
[8] |
Luo J, Wang X, Li S, Liu J, Guo Y, Niu G, Yao L, Fu Y, Gao L, Dong Q, Zhao C, Leng M, Ma F, Liang W, Wang L, Jin S, Han J, Zhang L, Etheridge J, Wang J, Yan Y, Sargent E H, Tang J. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 2018, 563(7732): 541–545
CrossRef
Pubmed
Google scholar
|
[9] |
Yan C, Lin K, Lu J, Wei Z. Composition engineering to obtain efficient hybrid perovskite light-emitting diodes. Frontiers of Optoelectronics, 2020, 13(3): 282–290
CrossRef
Google scholar
|
[10] |
Huang J, Yuan Y, Shao Y, Yan Y. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nature Reviews. Materials, 2017, 2(7): 17042
CrossRef
Google scholar
|
[11] |
Xiao Z, Yan Y. Progress in theoretical study of metal halide perovskite solar cell materials. Energy Materials, 2017, 7(22): 1701136
CrossRef
Google scholar
|
[12] |
Yin W J, Shi T, Yan Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Advanced Materials, 2014, 26(27): 4653–4658
CrossRef
Pubmed
Google scholar
|
[13] |
Meng W, Wang X, Xiao Z, Wang J, Mitzi D B, Yan Y. Parity-forbidden transitions and their impact on the optical absorption properties of lead-free metal halide perovskites and double perovskites. Journal of Physical Chemistry Letters, 2017, 8(13): 2999–3007
CrossRef
Pubmed
Google scholar
|
[14] |
Umari P, Mosconi E, De Angelis F. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Scientific Reports, 2014, 4(1): 4467
CrossRef
Pubmed
Google scholar
|
[15] |
Green M A, Jiang Y, Soufiani A M, Ho-Baillie A. Optical properties of photovoltaic organic-inorganic lead halide perovskites. Journal of Physical Chemistry Letters, 2015, 6(23): 4774–4785
CrossRef
Pubmed
Google scholar
|
[16] |
Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342(6156): 341–344
CrossRef
Pubmed
Google scholar
|
[17] |
Yin W J, Shi T, Yan Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Applied Physics Letters, 2014, 104(6): 063903
CrossRef
Google scholar
|
[18] |
Kang J, Wang L W. High defect tolerance in lead halide perovskite CsPbBr3. Journal of Physical Chemistry Letters, 2017, 8(2): 489–493
CrossRef
Pubmed
Google scholar
|
[19] |
Huang H, Bodnarchuk M I, Kershaw S V, Kovalenko M V, Rogach A L. Lead halide perovskite nanocrystals in the research spotlight: stability and defect tolerance. ACS Energy Letters, 2017, 2(9): 2071–2083
CrossRef
Pubmed
Google scholar
|
[20] |
Meggiolaro D, Motti S G, Mosconi E, Barker A J, Ball J, Andrea Riccardo Perini C, Deschler F, Petrozza A, De Angelis F. Iodine chemistry determines the defect tolerance of lead-halide perovskites. Energy & Environmental Science, 2018, 11(3): 702–713
CrossRef
Google scholar
|
[21] |
Chen K, Li L. Ordered structures with functional units as a paradigm of material design. Advanced Materials, 2019, 31(32): e1901115
CrossRef
Pubmed
Google scholar
|
[22] |
Xiao Z, Meng W, Wang J, Mitzi D B, Yan Y. Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality. Materials Horizons, 2017, 4(2): 206–216
CrossRef
Google scholar
|
[23] |
Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorganic Chemistry, 2013, 52(15): 9019–9038
CrossRef
Pubmed
Google scholar
|
[24] |
Brgoch J, Lehner A J, Chabinyc M L, Seshadri R. Ab initio calculations of band gaps and absolute band positions of polymorphs of RbPbI3 and CsPbI3: implications for main-group halide perovskite photovoltaics. Journal of Physical Chemistry C, 2014, 118(48): 27721–27727
CrossRef
Google scholar
|
[25] |
Saparov B, Mitzi D B. Organic-inorganic perovskites: structural versatility for functional materials design. Chemical Reviews, 2016, 116(7): 4558–4596
CrossRef
Pubmed
Google scholar
|
[26] |
Kahwagi R F, Thornton S T, Smith B, Koleilat G I. Dimensionality engineering of metal halide perovskites. Frontiers of Optoelectronics, 2020, 13(3): 196–224
CrossRef
Google scholar
|
[27] |
Raptopoulou C P, Terzis A, Mousdis G A, Papavassiliou G C. Preparation, structure and optical properties of [CH3SC(NH2)2]3SnI5, [CH3SC(NH2)2][HSC(NH2)2]SnBr4, (CH3C5H4NCH3)PbBr3, and [C6H5CH2SC(NH2)2]4Pb3I10. Zeitschrift für Naturforschung. Teil B. Anorganische Chemie, Organische Chemie, Biochemie, Biophysik, Biologie, 2002, 57(6): 645–650
CrossRef
Google scholar
|
[28] |
Saidaminov M I, Almutlaq J, Sarmah S, Dursun I, Zhumekenov A A, Begum R, Pan J, Cho N, Mohammed O F, Bakr O M. Pure Cs4PbBr6: highly luminescent zero-dimensional perovskite solids. ACS Energy Letters, 2016, 1(4): 840–845
CrossRef
Google scholar
|
[29] |
Zhang Y, Saidaminov M I, Dursun I, Yang H, Murali B, Alarousu E, Yengel E, Alshankiti B A, Bakr O M, Mohammed O F. Zero-dimensional Cs4PbBr6 perovskite nanocrystals. Journal of Physical Chemistry Letters, 2017, 8(5): 961–965
CrossRef
Pubmed
Google scholar
|
[30] |
Lin H, Zhou C, Tian Y, Siegrist T, Ma B. Low-dimensional organometal halide perovskites. ACS Energy Letters, 2018, 3(1): 54–62
CrossRef
Pubmed
Google scholar
|
[31] |
Smith M D, Connor B A, Karunadasa H I. Tuning the luminescence of layered halide perovskites. Chemical Reviews, 2019, 119(5): 3104–3139
CrossRef
Pubmed
Google scholar
|
[32] |
Tan Z, Li J, Zhang C, Li Z, Hu Q, Xiao Z, Kamiya T, Hosono H, Niu G, Lifshitz E, Cheng Y, Tang J. Highly efficient blue-emitting Bi-doped Cs2SnCl6 perovskite variant: photoluminescence induced by impurity doping. Advanced Functional Materials, 2018, 28(29): 1801131
CrossRef
Google scholar
|
[33] |
Li J, Tan Z, Hu M, Chen C, Luo J, Li S, Gao L, Xiao Z, Niu G, Tang J. Antimony doped Cs2SnCl6 with bright and stable emission. Frontiers of Optoelectronics, 2019, 12(4): 352–364
CrossRef
Google scholar
|
[34] |
Tan Z, Chu Y, Chen J, Li J, Ji G, Niu G, Gao L, Xiao Z, Tang J. Lead-free perovskite variant solid solutions Cs2Sn1−xTexCl6: bright luminescence and high anti-water stability. Advanced Materials, 2020, 32(32): e2002443
CrossRef
Pubmed
Google scholar
|
[35] |
Xiao Z, Song Z, Yan Y. From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Advanced Materials, 2019, 31(47): e1803792
CrossRef
Pubmed
Google scholar
|
[36] |
Zhao X G G, Yang D, Ren J C C, Sun Y, Xiao Z, Zhang L. Rational design of halide double perovskites for optoelectronic applications. Joule, 2018, 2(9): 1662–1673
CrossRef
Google scholar
|
[37] |
Swarnkar A, Marshall A R, Sanehira E M, Chernomordik B D, Moore D T, Christians J A, Chakrabarti T, Luther J M. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science, 2016, 354(6308): 92–95
CrossRef
Pubmed
Google scholar
|
[38] |
Jiang Y, Yuan J, Ni Y, Yang J, Wang Y, Jiu T, Yuan M, Chen J. Reduced-dimensional α-CsPbX3 perovskites for efficient and stable photovoltaics. Joule, 2018, 2(7): 1356–1368
CrossRef
Google scholar
|
[39] |
Han B, Cai B, Shan Q, Song J, Li J, Zhang F, Chen J, Fang T, Ji Q, Xu X, Zeng H. Stable, efficient red perovskite light-emitting diodes by (α,δ)-CsPbI3 phase engineering. Advanced Functional Materials, 2018, 28(47): 1804285
CrossRef
Google scholar
|
[40] |
Chen K, Zhong Q, Chen W, Sang B, Wang Y, Yang T, Liu Y, Zhang Y, Zhang H. Short-chain ligand-passivated stable α-CsPbI3 quantum dot for all-inorganic perovskite solar cells. Advanced Functional Materials, 2019, 29(24): 1900991
CrossRef
Google scholar
|
[41] |
Hu Y, Bai F, Liu X, Ji Q, Miao X, Qiu T, Zhang S. Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells. ACS Energy Letters, 2017, 2(10): 2219–2227
CrossRef
Google scholar
|
[42] |
Woodward P M. Octahedral tilting in perovskites. I. Geometrical considerations. Acta Crystallographica. Section B, Structural Science, 1997, 53(1): 32–43
CrossRef
Google scholar
|
[43] |
Umeyama D, Leppert L, Connor B A, Manumpil M A, Neaton J B, Karunadasa H I. Expanded analogs of three-dimensional lead-halide hybrid perovskites. Angewandte Chemie International Edition, 2020, 59(43): 19087–19094
CrossRef
Pubmed
Google scholar
|
[44] |
Tang Z, Guan J, Guloy A M. Synthesis and crystal structure of new organic-based layered perovskites with 2,2′-biimidazolium cations. Journal of Materials Chemistry, 2001, 11(2): 479–482
CrossRef
Google scholar
|
[45] |
Quarti C, Grancini G, Mosconi E, Bruno P, Ball J M, Lee M M, Snaith H J, Petrozza A, Angelis F D. The Raman spectrum of the CH3NH3PbI3 hybrid perovskite: interplay of theory and experiment. Journal of Physical Chemistry Letters, 2014, 5(2): 279–284
CrossRef
Pubmed
Google scholar
|
[46] |
Cortecchia D, Neutzner S, Srimath Kandada A R, Mosconi E, Meggiolaro D, De Angelis F, Soci C, Petrozza A. Broadband emission in two-dimensional hybrid perovskites: the role of structural deformation. Journal of the American Chemical Society, 2017, 139(1): 39–42
CrossRef
Pubmed
Google scholar
|
[47] |
Yaffe O, Guo Y, Tan L Z, Egger D A, Hull T, Stoumpos C C, Zheng F, Heinz T F, Kronik L, Kanatzidis M G, Owen J S, Rappe A M, Pimenta M A, Brus L E. Local polar fluctuations in lead halide perovskite crystals. Physical Review Letters, 2017, 118(13): 136001
CrossRef
Pubmed
Google scholar
|
[48] |
Xiao Z, Meng W, Saparov B, Duan H S, Wang C, Feng C, Liao W, Ke W, Zhao D, Wang J, Mitzi D B, Yan Y. Photovoltaic properties of two-dimensional (CH3NH3)2Pb(SCN)2I2 perovskite: a combined experimental and density functional theory study. Journal of Physical Chemistry Letters, 2016, 7(7): 1213–1218
CrossRef
Pubmed
Google scholar
|
[49] |
Saba M, Cadelano M, Marongiu D, Chen F, Sarritzu V, Sestu N, Figus C, Aresti M, Piras R, Lehmann A G, Cannas C, Musinu A, Quochi F, Mura A, Bongiovanni G. Correlated electron-hole plasma in organometal perovskites. Nature Communications, 2014, 5(1): 5049
CrossRef
Pubmed
Google scholar
|
[50] |
Shi J, Zhang H, Li Y, Jasieniak J J, Li Y, Wu H, Luo Y, Li D, Meng Q. Identification of high-temperature exciton states and their phase-dependent trapping behaviour in lead halide perovskites. Energy & Environmental Science, 2018, 11(6): 1460–1469
CrossRef
Google scholar
|
[51] |
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B: Condensed Matter, 1996, 54(16): 11169–11186
CrossRef
Pubmed
Google scholar
|
[52] |
Wang Y, Lv J, Zhu L, Ma Y. Crystal structure prediction via particle-swarm optimization. Physical Review B: Condensed Matter and Materials Physics, 2010, 82(9): 094116
CrossRef
Google scholar
|
[53] |
Wang Y, Lv J, Zhu L, Ma Y. CALYPSO: a method for crystal structure prediction. Computer Physics Communications, 2012, 183(10): 2063–2070
CrossRef
Google scholar
|
[54] |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868
CrossRef
Pubmed
Google scholar
|
[55] |
Togo A, Tanaka I. First principles phonon calculations in materials science. Scripta Materialia, 2015, 108: 1–5
CrossRef
Google scholar
|
[56] |
Zheng Q. VASP_TDM, https://github.com/QijingZheng/VASP_TDM, 2016
|
[57] |
Heyd J, Scuseria G E, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. Journal of Chemical Physics, 2003, 118(18): 8207–8215
CrossRef
Google scholar
|
[58] |
Heyd J, Scuseria G E, Ernzerhof M. Erratum: “Hybrid functionals based on a screened Coulomb potential”. Journal of Chemical Physics, 2006, 124(21): 219906
CrossRef
Google scholar
|
[59] |
Fonari A, Stauffer S. VASP_RAMAN.PY, https://github.com/raman-sc/VASP, 2013
|
[60] |
Matsumoto S, Watanabe M, Akazome M. Incrementing Stokes shifts through the formation of 2,2′-biimidazoldiium salts. Organic Letters, 2018, 20(12): 3613–3617
CrossRef
Pubmed
Google scholar
|
[61] |
Momma K, Izumi F. VESTA : a three-dimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography, 2008, 41(3): 653–658
CrossRef
Google scholar
|
/
〈 | 〉 |