Fundamentals and applications of spin-decoupled Pancharatnam–Berry metasurfaces

Yingcheng QIU, Shiwei TANG, Tong CAI, Hexiu XU, Fei DING

PDF(4210 KB)
PDF(4210 KB)
Front. Optoelectron. ›› 2021, Vol. 14 ›› Issue (2) : 134-147. DOI: 10.1007/s12200-021-1220-6
REVIEW ARTICLE
REVIEW ARTICLE

Fundamentals and applications of spin-decoupled Pancharatnam–Berry metasurfaces

Author information +
History +

Abstract

Manipulating circularly polarized (CP) electromagnetic (EM) waves at will is significantly important for a wide range of applications ranging from chiral-molecule manipulations to optical communication. However, conventional EM devices based on natural materials suffer from limited functionalities, bulky configurations, and low efficiencies. Recently, Pancharatnam–Berry (PB) phase metasurfaces have shown excellent capabilities in controlling CP waves in different frequency domains, thereby allowing for multi-functional PB meta-devices that integrate distinct functionalities into single and flat devices. Nevertheless, the PB phase has intrinsically opposite signs for two spins, resulting in locked and mirrored functionalities for right CP and left CP beams. Here we review the fundamentals and applications of spin-decoupled metasurfaces that release the spin-locked limitation of PB metasurfaces by combining the orientation-dependent PB phase and the dimension-dependent propagation phase. This provides a general and practical guideline toward realizing spin-decoupled functionalities with a single metasurface for orthogonal circular polarizations. Finally, we conclude this review with a short conclusion and personal outlook on the future directions of this rapidly growing research area, hoping to stimulate new research outputs that can be useful in future applications.

Graphical abstract

Keywords

spin-decoupled / Pancharatnam–Berry (PB) metasurfaces

Cite this article

Download citation ▾
Yingcheng QIU, Shiwei TANG, Tong CAI, Hexiu XU, Fei DING. Fundamentals and applications of spin-decoupled Pancharatnam–Berry metasurfaces. Front. Optoelectron., 2021, 14(2): 134‒147 https://doi.org/10.1007/s12200-021-1220-6

References

[1]
Cai T, Wang G, Tang S, Xu H, Duan J, Guo H, Guan F, Sun S, He Q, Zhou L. High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces. Physical Review Applied, 2017, 8(3): 034033
CrossRef Google scholar
[2]
Cai T, Tang S, Wang G, Xu H, Sun S, He Q, Zhou L. High-performance bifunctional metasurfaces in transmission and reflection geometries. Advanced Optical Materials, 2017, 5(2): 1600506
CrossRef Google scholar
[3]
Díaz-Rubio A, Asadchy V S, Elsakka A, Tretyakov S A. From the generalized reflection law to the realization of perfect anomalous reflectors. Science Advances, 2017, 3(8): e1602714
CrossRef Pubmed Google scholar
[4]
Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science, 2016, 352(6290): 1190–1194
CrossRef Pubmed Google scholar
[5]
Moreno G, Yakovlev A B, Bernety H M, Werner D H, Xin H, Monti A, Bilotti F, Alu A. Wideband elliptical metasurface cloaks in printed antenna technology. IEEE Transactions on Antennas and Propagation, 2018, 66(7): 3512–3525
CrossRef Google scholar
[6]
Sima B, Chen K, Luo X, Zhao J, Feng Y. Combining frequency-selective scattering and specular reflection through phase-dispersion tailoring of a metasurface. Physical Review Applied, 2018, 10(6): 064043
CrossRef Google scholar
[7]
Liu K, Guo W, Wang G, Li H, Liu G. A novel broadband bi-functional metasurface for vortex generation and simultaneous RCS reduction. IEEE Access: Practical Innovations, Open Solutions, 2018, 6: 63999–64007
CrossRef Google scholar
[8]
Zhang Y, Liu W, Gao J, Yang X. Generating focused 3D perfect vortex beams by plasmonic metasurfaces. Advanced Optical Materials, 2018, 6(4): 1701228
CrossRef Google scholar
[9]
Cai T, Wang G, Zhang X, Liang J, Zhuang Y, Liu D, Xu H. Ultra-thin polarization beam splitter using 2-D transmissive phase gradient metasurface. IEEE Transactions on Antennas and Propagation, 2015, 63(12): 5629–5636
CrossRef Google scholar
[10]
Pfeiffer C, Zhang C, Ray V, Guo L J, Grbic A. High performance bianisotropic metasurfaces: asymmetric transmission of light. Physical Review Letters, 2014, 113(2): 023902
CrossRef Pubmed Google scholar
[11]
Ni X, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M. Broadband light bending with plasmonic nanoantennas. Science, 2012, 335(6067): 427
CrossRef Pubmed Google scholar
[12]
Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334(6054): 333–337
CrossRef Pubmed Google scholar
[13]
Akram M R, Mehmood M Q, Bai X, Jin R, Premaratne M, Zhu W. High efficiency ultrathin transmissive metasurfaces. Advanced Optical Materials, 2019, 7(11): 1801628
CrossRef Google scholar
[14]
Devlin R C, Ambrosio A, Rubin N A, Mueller J P B, Capasso F. Arbitrary spin-to-orbital angular momentum conversion of light. Science, 2017, 358(6365): 896–901
CrossRef Pubmed Google scholar
[15]
Ding G, Chen K, Luo X, Zhao J, Jiang T, Feng Y. Dual-helicity decoupled coding metasurface for independent spin-to-orbital angular momentum conversion. Physical Review Applied, 2019, 11(4): 044043
CrossRef Google scholar
[16]
Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces. Science, 2013, 339(6125): 1232009
CrossRef Pubmed Google scholar
[17]
Yu N, Capasso F. Flat optics with designer metasurfaces. Nature Materials, 2014, 13(2): 139–150
CrossRef Pubmed Google scholar
[18]
Lin D, Fan P, Hasman E, Brongersma M L. Dielectric gradient metasurface optical elements. Science, 2014, 345(6194): 298–302
CrossRef Pubmed Google scholar
[19]
Ding F, Deshpande R, Bozhevolnyi S I. Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence. Light, Science & Applications, 2018, 7(4): 17178
CrossRef Pubmed Google scholar
[20]
Boroviks S, Deshpande R A, Mortensen N A, Bozhevolnyi S I. Multifunctional metamirror: polarization splitting and focusing. ACS Photonics, 2018, 5(5): 1648–1653
CrossRef Google scholar
[21]
Xu H X, Tang S, Ling X, Luo W, Zhou L. Flexible control of highly-directive emissions based on bifunctional metasurfaces with low polarization cross-talking. Annalen der Physik, 2017, 529(5): 1700045
CrossRef Google scholar
[22]
Xu H, Tang S, Wang G, Cai T, Huang W, He Q, Sun S, Zhou L. Multifunctional microstrip array combining a linear polarizer and focusing metasurface. IEEE Transactions on Antennas and Propagation, 2016, 64(8): 3676–3682
CrossRef Google scholar
[23]
Liu S, Jun Cui T, Noor A, Tao Z, Zhang H C, Bai G, Yang Y, Yang Zhou X. Negative reflection and negative surface wave conversion from obliquely incident electromagnetic waves. Light, Science & Applications, 2018, 7(5): 18008
CrossRef Pubmed Google scholar
[24]
Huang L, Mühlenbernd H, Li X, Song X, Bai B, Wang Y, Zentgraf T. Broadband hybrid holographic multiplexing with geometric metasurfaces. Advanced Materials, 2015, 27(41): 6444–6449
CrossRef Pubmed Google scholar
[25]
Balthasar Mueller J P, Rubin N A, Devlin R C, Groever B, Capasso F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Physical Review Letters, 2017, 118(11): 113901
CrossRef Pubmed Google scholar
[26]
Xiao S, Zhong F, Liu H, Zhu S, Li J. Flexible coherent control of plasmonic spin-Hall effect. Nature Communications, 2015, 6(1): 8360
CrossRef Pubmed Google scholar
[27]
Choudhury S, Guler U, Shaltout A, Shalaev V M, Kildishev A V, Boltasseva A. Pancharatnam–Berry phase manipulating metasurface for visible color hologram based on low loss silver thin film. Advanced Optical Materials, 2017, 5(10): 1700196
CrossRef Google scholar
[28]
Wang S, Wang X, Kan Q, Ye J, Feng S, Sun W, Han P, Qu S, Zhang Y. Spin-selected focusing and imaging based on metasurface lens. Optics Express, 2015, 23(20): 26434–26441
CrossRef Pubmed Google scholar
[29]
Maguid E, Yulevich I, Yannai M, Kleiner V, Brongersma M L, Hasman E. Multifunctional interleaved geometric-phase dielectric metasurfaces. Light, Science & Applications, 2017, 6(8): e17027
CrossRef Pubmed Google scholar
[30]
Wen D, Chen S, Yue F, Chan K, Chen M, Ardron M, Li K F, Wong P W H, Cheah K W, Pun E Y B, Li G, Zhang S, Chen X. Metasurface device with helicity-dependent functionality. Advanced Optical Materials, 2016, 4(2): 321–327
CrossRef Google scholar
[31]
Luo W, Xiao S, He Q, Sun S, Zhou L. Photonic spin Hall effect with nearly 100% efficiency. Advanced Optical Materials, 2015, 3(8): 1102–1108
CrossRef Google scholar
[32]
Khorasaninejad M, Crozier K B. Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter. Nature Communications, 2014, 5(1): 5386
CrossRef Pubmed Google scholar
[33]
Huang L, Chen X, Bai B, Tan Q, Jin G, Zentgraf T, Zhang S. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light, Science & Applications, 2013, 2(3): e70
CrossRef Google scholar
[34]
Jiang Q, Bao Y, Lin F, Zhu X, Zhang S, Fang Z. Spin-controlled integrated near-and far-field optical launcher. Advanced Functional Materials, 2018, 28(8): 1705503
CrossRef Google scholar
[35]
Jin J, Li X, Guo Y, Pu M, Gao P, Ma X, Luo X. Polarization-controlled unidirectional excitation of surface plasmon polaritons utilizing catenary apertures. Nanoscale, 2019, 11(9): 3952–3957
CrossRef Pubmed Google scholar
[36]
Maguid E, Yulevich I, Veksler D, Kleiner V, Brongersma M L, Hasman E. Photonic spin-controlled multi-functional shared-aperture antenna array. Science, 2016, 352(6290): 1202–1206
CrossRef Pubmed Google scholar
[37]
Veksler D, Maguid E, Shitrit N, Ozeri D, Kleiner V, Hasman E. Multiple wavefront shaping by metasurface based on mixed random antenna groups. ACS Photonics, 2015, 2(5): 661–667
CrossRef Google scholar
[38]
Mehmood M Q, Mei S, Hussain S, Huang K, Siew S Y, Zhang L, Zhang T, Ling X, Liu H, Teng J, Danner A, Zhang S, Qiu C W. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices. Advanced Materials, 2016, 28(13): 2533–2539
CrossRef Pubmed Google scholar
[39]
Ding F, Wang Z, He S, Shalaev V M, Kildishev A V. Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach. ACS Nano, 2015, 9(4): 4111–4119
CrossRef Pubmed Google scholar
[40]
Zhang C, Divitt S, Fan Q, Zhu W, Agrawal A, Lu Y, Xu T, Lezec H J. Low-loss metasurface optics down to the deep ultraviolet region. Light, Science & Applications, 2020, 9(1): 55
CrossRef Pubmed Google scholar
[41]
Yuan Y, Zhang K, Ratni B, Song Q, Ding X, Wu Q, Burokur S N, Genevet P. Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces. Nature Communications, 2020, 11(1): 4186
CrossRef Pubmed Google scholar
[42]
Tian S, Guo H, Hu J, Zhuang S. Dielectric longitudinal bifocal metalens with adjustable intensity and high focusing efficiency. Optics Express, 2019, 27(2): 680–688
CrossRef Pubmed Google scholar
[43]
Jin R, Tang L, Li J, Wang J, Wang Q, Liu Y, Dong Z. Experimental demonstration of multidimensional and multi-functional metalenses based on photonic spin hall effect. ACS Photonics, 2020, 7(2): 512–518
CrossRef Google scholar
[44]
Li X, Li S, Wang G, Lei Y, Hong Y, Zhang L, Zeng C, Wang L, Sun Q, Zhang W. Tunable doublet lens based on dielectric metasurface using phase-change material. Modern Physics Letters B, 2020, 34(28): 2050313
CrossRef Google scholar
[45]
Xu H, Han L, Li Y, Sun Y, Zhao J, Zhang S, Qiu C. Completely spin-decoupled dual-phase hybrid metasurfaces for arbitrary wavefront control. ACS Photonics, 2019, 6(1): 211–220
CrossRef Google scholar
[46]
Fan Q, Zhu W, Liang Y, Huo P, Zhang C, Agrawal A, Huang K, Luo X, Lu Y, Qiu C, Lezec H J, Xu T. Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible. Nano Letters, 2019, 19(2): 1158–1165
CrossRef Pubmed Google scholar
[47]
Pancharatnam S. Generalized theory of interference and its applications. In: Proceedings of the Indian Academy of Sciences-Section A. Beilin: Springer, 1956, 398–417
[48]
Berry M V. Quantal phase factors accompanying adiabatic changes. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1802, 1984(392): 45–57
[49]
Bomzon Z, Biener G, Kleiner V, Hasman E. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Optics Letters, 2002, 27(13): 1141–1143
CrossRef Pubmed Google scholar
[50]
Menzel C, Rockstuhl C, Lederer F. Advanced Jones calculus for the classification of periodic metamaterials. Physical Review A, 2010, 82(5): 053811
CrossRef Google scholar
[51]
Armitage N P. Constraints on Jones transmission matrices from time-reversal invariance and discrete spatial symmetries. Physical Review. B, 2014, 90(3): 035135
CrossRef Google scholar
[52]
Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nature Nanotechnology, 2015, 10(11): 937–943
CrossRef Pubmed Google scholar
[53]
Huang L, Chen X, Mühlenbernd H, Li G, Bai B, Tan Q, Jin G, Zentgraf T, Zhang S. Dispersionless phase discontinuities for controlling light propagation. Nano Letters, 2012, 12(11): 5750–5755
CrossRef Pubmed Google scholar
[54]
Xu H, Ma S, Ling X, Zhang X, Tang S, Cai T, Sun S, He Q, Zhou L. Deterministic approach to achieve broadband polarization-independent diffusive scatterings based on metasurfaces. ACS Photonics, 2018, 5(5): 1691–1702
CrossRef Google scholar
[55]
Chen X, Huang L, Mühlenbernd H, Li G, Bai B, Tan Q, Jin G, Qiu C W, Zentgraf T, Zhang S. Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens. Advanced Optical Materials, 2013, 1(7): 517–521
CrossRef Google scholar
[56]
Zhao Z, Pu M, Gao H, Jin J, Li X, Ma X, Wang Y, Gao P, Luo X. Multispectral optical metasurfaces enabled by achromatic phase transition. Scientific Reports, 2015, 5(1): 15781
CrossRef Pubmed Google scholar
[57]
Yue F, Wen D, Zhang C, Gerardot B D, Wang W, Zhang S, Chen X. Multichannel polarization-controllable superpositions of orbital angular momentum states. Advanced Materials, 2017, 29(15): 1603838
CrossRef Pubmed Google scholar
[58]
Chen P, Ge S, Duan W, Wei B, Cui G, Hu W, Lu Y. Digitalized geometric phases for parallel optical spin and orbital angular momentum encoding. ACS Photonics, 2017, 4(6): 1333–1338
CrossRef Google scholar
[59]
Wen D, Yue F, Liu W, Chen S, Chen X. Geometric metasurfaces for ultrathin optical devices. Advanced Optical Materials, 2018, 6(17): 1800348
CrossRef Google scholar
[60]
Gao H, Li Y, Chen L, Jin J, Pu M, Li X, Gao P, Wang C, Luo X, Hong M. Quasi-Talbot effect of orbital angular momentum beams for generation of optical vortex arrays by multiplexing metasurface design. Nanoscale, 2018, 10(2): 666–671
CrossRef Pubmed Google scholar
[61]
Li Y, Li X, Chen L, Pu M, Jin J, Hong M, Luo X. Orbital angular momentum multiplexing and demultiplexing by a single metasurface. Advanced Optical Materials, 2017, 5(2): 1600502
CrossRef Google scholar
[62]
Yang K, Pu M, Li X, Ma X, Luo J, Gao H, Luo X. Wavelength-selective orbital angular momentum generation based on a plasmonic metasurface. Nanoscale, 2016, 8(24): 12267–12271
CrossRef Pubmed Google scholar
[63]
Ma X, Pu M, Li X, Huang C, Wang Y, Pan W, Zhao B, Cui J, Wang C, Zhao Z, Luo X. A planar chiral meta-surface for optical vortex generation and focusing. Scientific Reports, 2015, 5(1): 10365
CrossRef Pubmed Google scholar
[64]
Ren H, Li X, Zhang Q, Gu M. On-chip noninterference angular momentum multiplexing of broadband light. Science, 2016, 352(6287): 805–809
CrossRef Pubmed Google scholar
[65]
Lin J, Mueller J P, Wang Q, Yuan G, Antoniou N, Yuan X C, Capasso F. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science, 2013, 340(6130): 331–334
CrossRef Pubmed Google scholar
[66]
Duan J, Guo H, Dong S, Cai T, Luo W, Liang Z, He Q, Zhou L, Sun S. High-efficiency chirality-modulated spoof surface plasmon meta-coupler. Scientific Reports, 2017, 7(1): 1354
CrossRef Pubmed Google scholar
[67]
Shitrit N, Bretner I, Gorodetski Y, Kleiner V, Hasman E. Optical spin Hall effects in plasmonic chains. Nano Letters, 2011, 11(5): 2038–2042
CrossRef Pubmed Google scholar
[68]
Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S. Metasurface holograms reaching 80% efficiency. Nature Nanotechnology, 2015, 10(4): 308–312
CrossRef Pubmed Google scholar
[69]
Luo W, Sun S, Xu H, He Q, Zhou L. Transmissive ultrathin Pancharatnam–Berry metasurfaces with nearly 100% efficiency. Physical Review Applied, 2017, 7(4): 044033
CrossRef Google scholar
[70]
Pors A, Nielsen M G, Bozhevolnyi S I. Plasmonic metagratings for simultaneous determination of Stokes parameters. Optica, 2015, 2(8): 716–723
CrossRef Google scholar
[71]
Wen D, Yue F, Li G, Zheng G, Chan K, Chen S, Chen M, Li K F, Wong P W H, Cheah K W, Pun E Y, Zhang S, Chen X. Helicity multiplexed broadband metasurface holograms. Nature Communications, 2015, 6(1): 8241
CrossRef Pubmed Google scholar
[72]
Zhang C, Yue F, Wen D, Chen M, Zhang Z, Wang W, Chen X. Multichannel metasurface for simultaneous control of holograms and twisted light beams. ACS Photonics, 2017, 4(8): 1906–1912
CrossRef Google scholar
[73]
Zhang Z, Wen D, Zhang C, Chen M, Wang W, Chen S, Chen X. Multifunctional light sword metasurface lens. ACS Photonics, 2018, 5(5): 1794–1799
CrossRef Google scholar
[74]
Chen X, Chen M, Mehmood M Q, Wen D, Yue F, Qiu C W, Zhang S. Longitudinal multifoci metalens for circularly polarized light. Advanced Optical Materials, 2015, 3(9): 1201–1206
CrossRef Google scholar
[75]
Xu H X, Hu G, Jiang M, Tang S, Wang Y, Wang C, Huang Y, Ling X, Liu H, Zhou J. Wavevector and frequency multiplexing performed by a spin-decoupled multichannel metasurface. Advanced Materials Technologies, 2020, 5(1): 1900710
CrossRef Google scholar
[76]
Guo W L, Wang G M, Luo X Y, Hou H S, Chen K, Feng Y. Ultrawideband spin-decoupled coding metasurface for independent dual-channel wavefront tailoring. Annalen der Physik, 2020, 532(3): 1900472
CrossRef Google scholar
[77]
Zi J, Xu Q, Wang Q, Tian C, Li Y, Zhang X, Han J, Zhang W. Antireflection-assisted all-dielectric terahertz metamaterial polarization converter. Applied Physics Letters, 2018, 113(10): 101104
CrossRef Google scholar
[78]
Xu J, Li R, Qin J, Wang S, Han T. Ultra-broadband wide-angle linear polarization converter based on H-shaped metasurface. Optics Express, 2018, 26(16): 20913–20919
CrossRef Pubmed Google scholar
[79]
Hu S, Yang S, Liu Z, Li J, Gu C. Broadband cross-polarization conversion by symmetry-breaking ultrathin metasurfaces. Applied Physics Letters, 2017, 111(24): 241108
CrossRef Google scholar
[80]
Borgese M, Costa F, Genovesi S, Monorchio A, Manara G. Optimal design of miniaturized reflecting metasurfaces for ultra-wideband and angularly stable polarization conversion. Scientific Reports, 2018, 8(1): 7651
CrossRef Pubmed Google scholar
[81]
Wu H, Liu S, Wan X, Zhang L, Wang D, Li L, Cui T J. Controlling energy radiations of electromagnetic waves via frequency coding metamaterials. Advancement of Science, 2017, 4(9): 1700098
CrossRef Pubmed Google scholar
[82]
Guan C, Wang Z, Ding X, Zhang K, Ratni B, Burokur S N, Jin M, Wu Q. Coding Huygens’ metasurface for enhanced quality holographic imaging. Optics Express, 2019, 27(5): 7108–7119
CrossRef Pubmed Google scholar
[83]
Liu S, Zhang L, Yang Q L, Xu Q, Yang Y, Noor A, Zhang Q, Iqbal S, Wan X, Tian Z, Tang W X, Cheng Q, Han J G, Zhang W L, Cui T J. Frequency-dependent dual-functional coding metasurfaces at terahertz frequencies. Advanced Optical Materials, 2016, 4(12): 1965–1973
CrossRef Google scholar
[84]
Wang D, Liu T, Zhou Y, Zheng X, Sun S, He Q, Zhou L. High-efficiency metadevices for bifunctional generations of vectorial optical fields. Nanophotonics, 2020, 10(1): 685–695
CrossRef Google scholar
[85]
Li S, Wang Z, Dong S, Yi S, Guan F, Chen Y, Guo H, He Q, Zhou L, Sun S. Helicity-delinked manipulations on surface waves and propagating waves by metasurfaces. Nanophotonics, 2020, 9(10): 3473–3481
CrossRef Google scholar
[86]
Wang Z, Li S, Zhang X, Feng X, Wang Q, Han J, He Q, Zhang W, Sun S, Zhou L. Excite spoof surface plasmons with tailored wavefronts using high-efficiency terahertz metasurfaces. Advanced Science, 2020, 7(19): 2000982
CrossRef Pubmed Google scholar
[87]
Yin L Z, Huang T J, Han F Y, Liu J Y, Wang D, Liu P K. High-efficiency terahertz spin-decoupled meta-coupler for spoof surface plasmon excitation and beam steering. Optics Express, 2019, 27(13): 18928–18939
CrossRef Pubmed Google scholar
[88]
Meng C, Tang S, Ding F, Bozhevolnyi S I. Optical gap-surface plasmon metasurfaces for spin-controlled surface plasmon excitation and anomalous beam steering. ACS Photonics, 2020, 7(7): 1849–1856
CrossRef Google scholar
[89]
Cai T, Wang G M, Xu H X, Tang S W, Li H, Liang J G, Zhuang Y Q. Bifunctional Pancharatnam–Berry metasurface with high-efficiency helicity-dependent transmissions and reflections. Annalen der Physik, 2018, 530(1): 1700321
CrossRef Google scholar
[90]
Fedotov V A, Mladyonov P L, Prosvirnin S L, Rogacheva A V, Chen Y, Zheludev N I. Asymmetric propagation of electromagnetic waves through a planar chiral structure. Physical Review Letters, 2006, 97(16): 167401
CrossRef Pubmed Google scholar
[91]
Liu J, Li Z, Liu W, Cheng H, Chen S, Tian J. High-efficiency mutual dual-band asymmetric transmission of circularly polarized waves with few-layer anisotropic metasurfaces. Advanced Optical Materials, 2016, 4(12): 2028–2034
CrossRef Google scholar
[92]
Ding G, Chen K, Qian G, Zhao J, Jiang T, Feng Y, Wang Z. Independent energy allocation of dual-helical multi-beams with spin-selective transmissive metasurface. Advanced Optical Materials, 2020, 8(16): 2000342
CrossRef Google scholar
[93]
Fan Q, Liu M, Zhang C, Zhu W, Wang Y, Lin P, Yan F, Chen L, Lezec H J, Lu Y, Agrawal A, Xu T. Independent amplitude control of arbitrary orthogonal states of polarization via dielectric metasurfaces. Physical Review Letters, 2020, 125(26): 267402
CrossRef Pubmed Google scholar
[94]
Chen C, Gao S, Song W, Li H, Zhu S N, Li T. Metasurfaces with planar chiral meta-atoms for spin light manipulation. Nano Letters, 2021, 21(4): 1815–1821
CrossRef Pubmed Google scholar
[95]
Xu Y, Zhang H, Li Q, Zhang X, Xu Q, Zhang W, Hu C, Zhang X, Han J, Zhang W. Generation of terahertz vector beams using dielectric metasurfaces via spin-decoupled phase control. Nanophotonics, 2020, 9(10): 3393–3402
CrossRef Google scholar
[96]
Huo P, Zhang C, Zhu W, Liu M, Zhang S, Zhang S, Chen L, Lezec H J, Agrawal A, Lu Y, Xu T. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging. Nano Letters, 2020, 20(4): 2791–2798
CrossRef Pubmed Google scholar

Acknowledgements

S. Tang acknowledges the support from the National Natural Science Foundation of China (Grant No. 11604167), and Zhejiang Province Natural Science Foundation of China (No. LY19A040004). F. Ding acknowledges the support from Villum Fonden (Nos. 00022988 and 37372).

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(4210 KB)

Accesses

Citations

Detail

Sections
Recommended

/