Improved phase retrieval in holographic data storage based on a designed iterative embedded data

Changyu YU, Suping WANG, Ruixian CHEN, Jianying HAO, Qijing ZHENG, Jinyu WANG, Xianying QIU, Kun WANG, Dakui LIN, Yi YANG, Hui LI, Xiao LIN, Xiaodi TAN

PDF(3315 KB)
PDF(3315 KB)
Front. Optoelectron. ›› 2021, Vol. 14 ›› Issue (4) : 529-539. DOI: 10.1007/s12200-021-1218-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Improved phase retrieval in holographic data storage based on a designed iterative embedded data

Author information +
History +

Abstract

Embedded data are used to retrieve phases quicker with high accuracy in phase-modulated holographic data storage (HDS). We propose a method to design an embedded data distribution using iterations to enhance the intensity of the high-frequency signal in the Fourier spectrum. The proposed method increases the anti-noise performance and signal-to-noise ratio (SNR) of the Fourier spectrum distribution, realizing a more efficient phase retrieval. Experiments indicate that the bit error rate (BER) of this method can be reduced by a factor of one after 10 iterations.

Graphical abstract

Keywords

holographic data storage (HDS) / phase retrieval / embedded data / high frequency

Cite this article

Download citation ▾
Changyu YU, Suping WANG, Ruixian CHEN, Jianying HAO, Qijing ZHENG, Jinyu WANG, Xianying QIU, Kun WANG, Dakui LIN, Yi YANG, Hui LI, Xiao LIN, Xiaodi TAN. Improved phase retrieval in holographic data storage based on a designed iterative embedded data. Front. Optoelectron., 2021, 14(4): 529‒539 https://doi.org/10.1007/s12200-021-1218-0

References

[1]
Reinsel D, Gantz J, Rydning J. The Digitization of the World−From Edge to Core. IDC & Seagate: IDC White Paper, 2018
[2]
Haw M. Holographic data storage: the light fantastic. Nature, 2003, 422(6932): 556–558
CrossRef Pubmed Google scholar
[3]
Van Heerden P J. Theory of optical information storage in solids. Applied Optics, 1963, 2(4): 393–400
CrossRef Google scholar
[4]
Horimai H, Tan X, Li J. Collinear holography. Applied Optics, 2005, 44(13): 2575–2579
CrossRef Pubmed Google scholar
[5]
Lin X, Hao J, Zheng M, Dai T, Li H, Ren Y. Optical holographic data storage-the time for new development. Opto-Electronic Engineering, 2019, 46(3): 180642
[6]
Lin X, Liu J, Hao J, Wang K, Zhang Y, Li H, Horimai H, Tan X. Collinear holographic data storage technologies. Opto-Electronic Advances, 2020, 3(3): 19000401
[7]
John R, Joseph J, Singh K. Holographic digital data storage using phase-modulated pixels. Optics and Lasers in Engineering, 2005, 43(2): 183–194
CrossRef Google scholar
[8]
Psaltis D, Levene M, Pu A, Barbastathis G, Curtis K. Holographic storage using shift multiplexing. Optics Letters, 1995, 20(7): 782–784
CrossRef Pubmed Google scholar
[9]
He M, Cao L, Tan Q, He Q, Jin G. Novel phase detection method for a holographic data storage system using two interferograms. Journal of Optics. A, Pure and Applied Optics, 2009, 11(6): 065705
CrossRef Google scholar
[10]
Jeon S H, Gil S K. 2-step phase-shifting digital holographic optical encryption and error analysis. Journal of the Optical Society of Korea, 2011, 15(3): 244–251
CrossRef Google scholar
[11]
Xu X F, Cai L Z, Wang Y R, Meng X F, Zhang H, Dong G Y, Shen X X. Blind phase shift extraction and wavefront retrieval by two-frame phase-shifting interferometry with an unknown phase shift. Optics Communications, 2007, 273(1): 54–59
CrossRef Google scholar
[12]
Lin X, Huang Y, Shimura T, Fujimura R, Tanaka Y, Endo M, Nishimoto H, Liu J, Li Y, Liu Y, Tan X. Fast non-interferometric iterative phase retrieval for holographic data storage. Optics Express, 2017, 25(25): 30905–30915
CrossRef Pubmed Google scholar
[13]
Pan X, Liu C, Lin Q, Zhu J. Ptycholographic iterative engine with self-positioned scanning illumination. Optics Express, 2013, 21(5): 6162–6168
CrossRef Pubmed Google scholar
[14]
Gureyev T E, Roberts A, Nugent K A. Phase retrieval with the transport-of-intensity equation: matrix solution with use of Zernike polynomials. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 1995, 12(9): 1932–1942
CrossRef Google scholar
[15]
Gureyev T E, Nugent K A. Rapid quantitative phase imaging using the transport of intensity equation. Optics Communications, 1997, 133(1–6): 339–346
CrossRef Google scholar
[16]
Volkov V V, Zhu Y, De Graef M. A new symmetrized solution for phase retrieval using the transport of intensity equation. Micron (Oxford, England), 2002, 33(5): 411–416
CrossRef Pubmed Google scholar
[17]
Fienup J R. Phase retrieval algorithms: a comparison. Applied Optics, 1982, 21(15): 2758–2769
CrossRef Pubmed Google scholar
[18]
Fienup J R. Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint. Journal of the Optical Society of America. A, Optics and Image Science, 1987, 4(1): 118–123
CrossRef Google scholar
[19]
Lin X, Huang Y, Li Y Y, Liu J, Liu J, Kang R, Tan X. Four-level phase pair encoding and decoding with single interferometric phase retrieval for holographic data storage. Chinese Optics Letters, 2018, 16(3): 032101
CrossRef Google scholar
[20]
Liu J, Zhang L, Wu A, Tanaka Y, Shigaki M, Shimura T, Lin X, Tan X. High noise margin decoding of holographic data page based on compressed sensing. Optics Express, 2020, 28(5): 7139–7151
CrossRef Pubmed Google scholar

Acknowledgements

This work was partially supported by the Open Project Program of Wuhan National Laboratory for Optoelectronics (No. 2019WNLOKF007) and the National Key R & D Program of China (No. 2018YFA0701800).

Disclosures

The authors declare no conflicts of interest.

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(3315 KB)

Accesses

Citations

Detail

Sections
Recommended

/