Rapid thermal evaporation for cadmium selenide thin-film solar cells

Kanghua LI, Xuetian LIN, Boxiang SONG, Rokas KONDROTAS, Chong WANG, Yue LU, Xuke YANG, Chao CHEN, Jiang TANG

PDF(1121 KB)
PDF(1121 KB)
Front. Optoelectron. ›› 2021, Vol. 14 ›› Issue (4) : 482-490. DOI: 10.1007/s12200-021-1217-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Rapid thermal evaporation for cadmium selenide thin-film solar cells

Author information +
History +

Abstract

Cadmium selenide (CdSe) belongs to the binary II-VI group semiconductor with a direct bandgap of ~1.7 eV. The suitable bandgap, high stability, and low manufacturing cost make CdSe an extraordinary candidate as the top cell material in silicon-based tandem solar cells. However, only a few studies have focused on CdSe thin-film solar cells in the past decades. With the advantages of a high deposition rate (~2 µm/min) and high uniformity, rapid thermal evaporation (RTE) was used to maximize the use efficiency of CdSe source material. A stable and pure hexagonal phase CdSe thin film with a large grain size was achieved. The CdSe film demonstrated a 1.72 eV bandgap, narrow photoluminescence peak, and fast photoresponse. With the optimal device structure and film thickness, we finally achieved a preliminary efficiency of 1.88% for CdSe thin-film solar cells, suggesting the applicability of CdSe thin-film solar cells.

Graphical abstract

Keywords

cadmium selenide (CdSe) / rapid thermal evaporation (RTE) / solar cells / thin film

Cite this article

Download citation ▾
Kanghua LI, Xuetian LIN, Boxiang SONG, Rokas KONDROTAS, Chong WANG, Yue LU, Xuke YANG, Chao CHEN, Jiang TANG. Rapid thermal evaporation for cadmium selenide thin-film solar cells. Front. Optoelectron., 2021, 14(4): 482‒490 https://doi.org/10.1007/s12200-021-1217-1

References

[1]
Hermle M, Feldmann F, Bivour M, Goldschmidt J C, Glunz S W. Passivating contacts and tandem concepts: Approaches for the highest silicon-based solar cell efficiencies. Applied Physics Reviews, 2020, 7(2): 021305–021312
CrossRef Google scholar
[2]
Meillaud F, Shah A, Droz C, Vallat-Sauvain E, Miazza C. Efficiency limits for single-junction and tandem solar cells. Solar Energy Materials and Solar Cells, 2006, 90(18–19): 2952–2959
CrossRef Google scholar
[3]
Rickus D B E. The CdSe thin-film solar cell. Conference Record of the IEEE Photovoltaic Specialists Conference, 1980, 1: 629–632
[4]
Lu S, Chen C, Tang J. Possible top cells for next-generation Si-based tandem solar cells. Frontiers of Optoelectronics, 2020, 13(3): 246–255
CrossRef Google scholar
[5]
Yamaguchi M, Lee K H, Araki K, Kojima N. A review of recent progress in heterogeneous silicon tandem solar cells. Journal of Physics D, Applied Physics, 2018, 51(13): 133002–133015
CrossRef Google scholar
[6]
Todorov T, Gunawan O, Guha S. A road towards 25% efficiency and beyond: perovskite tandem solar cells. Molecular Systems Design & Engineering, 2016, 1(4): 370–376
CrossRef Google scholar
[7]
Todorov T K, Bishop D M, Lee Y S. Materials perspectives for next-generation low-cost tandem solar cells. Solar Energy Materials and Solar Cells, 2018, 180: 350–357
CrossRef Google scholar
[8]
Bakiyaraj G, Dhanasekaran R. Effect of annealing on the properties of chemical bath deposited nanorods of CdSe thin films. Crystal Research and Technology, 2012, 47(9): 960–966
CrossRef Google scholar
[9]
Bagheri B, Kottokkaran R, Poly L P, Sharikadze S, Dalal V. Efficient heterojunction thin film CdSe solar cells deposited using thermal evaporation. In: Proceedings of IEEE 46th Photovoltaic Specialists Conference (PVSC). Chicago: IEEE, 2019, 1822–1825
[10]
Che S B, Nomura I, Kikuchi A, Shimomura K, Kishino K J P S S. Visible light emitting diode with ZnCdSe/BeZnTe superlattices as an active layer and MgSe/BeZnTe superlattices as a p-cladding layer. Physica Status Solidi (B): Basic Solid State Physics, 2002, 229(2): 1001–1004
[11]
Jia S, Yun X, An Y, Li P, Xiao J. Fabrication and characterization of photo-detector based on CdSe0.5S0.5 quantum dots. Asia Communications & Photonics Conference, 2013, 2013: 978–981
[12]
Mahawela P, Jeedigunta S, Vakkalanka S, Ferekides C S, Morel D L J T S F. Transparent high-performance CdSe thin-film solar cells. Thin Solid Films, 2005, 480–481(3): 466–470
[13]
Wang C, Du X, Wang S, Deng H, Chen C, Niu G, Pang J, Li K, Lu S, Lin X, Song H, Tang J. Sb2Se3 film with grain size over 10 µm toward X-ray detection. Frontiers of Optoelectronics, 2020, doi:10.1007/s12200-020-1064-5
CrossRef Google scholar
[14]
Shin Y M, Lee C S, Shin D H, Kwon H S, Park B G, Ahn B T. Surface modification of CIGS film by annealing and its effect on the band structure and photovoltaic properties of CIGS solar cells. Current Applied Physics, 2015, 15(1): 18–24
CrossRef Google scholar
[15]
Song H, Zhan X, Li D, Zhou Y, Yang B, Zeng K, Zhong J, Miao X, Tang J. Rapid thermal evaporation of Bi2S3 layer for thin film photovoltaics. Solar Energy Materials and Solar Cells, 2016, 146: 1–7
CrossRef Google scholar
[16]
Xue D J, Liu S C, Dai C M, Chen S, He C, Zhao L, Hu J S, Wan L J. GeSe thin-film solar cells fabricated by self-regulated rapid thermal sublimation. Journal of the American Chemical Society, 2017, 139(2): 958–965
CrossRef Pubmed Google scholar
[17]
Somorjai G A. Vapor pressure and solid-vapor equilibrium of CdSe (cadmium selenide). Journal of Physical Chemistry, 1961, 65(6): 1059–1061
CrossRef Google scholar
[18]
Li K, Kondrotas R, Chen C, Lu S, Wen X, Li D, Luo J, Zhao Y, Tang J. Improved efficiency by insertion of Zn1−xMgxO through sol-gel method in ZnO/Sb2Se3 solar cell. Solar Energy, 2018, 167: 10–17
CrossRef Google scholar
[19]
Major J D, Proskuryakov Y Y, Durose K. Impact of CdTe surface composition on doping and device performance in close space sublimation deposited CdTe solar cells. Progress in Photovoltaics, 2013, 21(4): 436–443
[20]
Gnatenko Y P, Bukivskij P M, Faryna I O, Opanasyuk A S, Ivashchenko M M. Photoluminescence of high optical quality CdSe thin films deposited by close-spaced vacuum sublimation. Journal of Luminescence, 2014, 146: 174–177
CrossRef Google scholar
[21]
Tian L, Yang H, Ding J, Li Q, Mu Y, Zhang Y. Synthesis of the wheat-like CdSe/CdTe thin film heterojunction and their photovoltaic applications. Current Applied Physics, 2014, 14(6): 881–885
CrossRef Google scholar
[22]
Chen C, Zhao Y, Lu S, Li K, Li Y, Yang B, Chen W, Wang L, Li D, Deng H, Yi F, Tang J. Accelerated optimization of TiO2/Sb2Se3 thin film solar cells by high-throughput combinatorial approach. Advanced Energy Materials, 2017, 7(20): 1700866
CrossRef Google scholar
[23]
Parsons R B, Wardzynski W, Yoffe A D. The optical properties of single crystals of cadmium selenide. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1961, 262(1308): 120–131
CrossRef Google scholar
[24]
Rosly H N, Rahman K S, Harif M N, Doroody C, Isah M, Misran H, Amin N. Annealing temperature assisted microstructural and optoelectrical properties of CdSe thin film grown by RF magnetron sputtering. Superlattices and Microstructures, 2020, 148: 106716
CrossRef Google scholar
[25]
Ni Z H, Kong B, Zeng T X, Yang H, He Z Y. The effects of the intrinsic defects on the electronic, magnetic and optical properties for bulk and monolayer CdSe: first-principles GGA+ U investigations. Materials Research Express, 2019, 6(10): 105903
CrossRef Google scholar
[26]
Murali K R, Srinivasan K, Trivedi D C. Vacuum evaporated CdSe thin films and their characteristics. Materials Letters, 2005, 59(1): 15–18
CrossRef Google scholar
[27]
Murali K R, Srinivasan K, Trivedi D C. Structural and photoelectrochemical properties of CdSe thin films deposited by the vacuum evaporation technique. Materials Science and Engineering B, 2004, 111(1): 1–4
CrossRef Google scholar
[28]
Kosyak V, Opanasyuk A, Bukivskij P M, Gnatenko Y P. Study of the structural and photoluminescence properties of CdTe polycrystalline films deposited by close-spaced vacuum sublimation. Journal of Crystal Growth, 2010, 312(10): 1726–1730
CrossRef Google scholar
[29]
Hariskos D, Powalla M, Chevaldonnet N, Lincot D, Schindler A. Chemical bath deposition of CdS buffer layer: prospects of increasing materials yield and reducing waste. Thin Solid Films, 387(1–2): 179–181
[30]
Leng M Y, Luo M, Chen C, Qin S K, Chen J, Zhong J, Tang J.Selenization of Sb2Se3 absorber layer: an efficient step to improve device performance of CdS/Sb2Se3 solar cells. Applied Physics Letters, 2014, 105(8): 083905
[31]
Hu W D, Dall’Agnese C, Wang X F, Chen G, Li M Z, Song J X, Wei Y J, Miyasaka T. Copper iodide-PEDOT:PSS double hole transport layers for improved efficiency and stability in perovskite solar cells. Journal of Photochemistry and Photobiology A Chemistry, 2018, 357: 36–40
CrossRef Google scholar
[32]
Voswinckel S, Mikolajick T, Wesselak V. Influence of the active leakage current pathway on the potential induced degradation of CIGS thin-film solar modules. Solar Energy, 2020, 197: 455–461
CrossRef Google scholar
[33]
Wang L, Li D B, Li K, Chen C, Deng H X, Gao L, Zhao Y, Jiang F, Li L, Huang F, He Y, Song H, Niu G, Tang J. Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer. Nature Energy, 2017, 2(4): 17046–17053
CrossRef Google scholar

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61725401, 61904058, and 62050039), the National Key R&D Program of China (No. 2016YFA0204000), the Innovation Fund of WNLO, National Postdoctoral Program for Innovative Talent (No. BX20190127), the Graduates’ Innovation Fund of Huazhong University of Science and Technology (No. 2020yjsCXCY003), and China Postdoctoral Science Foundation Project (Nos. 2019M662623 and 2020M680101). The authors thank the Analytical and Testing Center of HUST and the facility support of the Center for Nanoscale Characterization and Devices (CNCD), WNLO-HUST.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s12200-021-1217-1 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(1121 KB)

Accesses

Citations

Detail

Sections
Recommended

/