Finite element modeling of electromagnetic properties in photonic bianisotropic structures

Zhongfei XIONG, Weijin CHEN, Zhuoran WANG, Jing XU, Yuntian CHEN

PDF(730 KB)
PDF(730 KB)
Front. Optoelectron. ›› 2021, Vol. 14 ›› Issue (2) : 148-153. DOI: 10.1007/s12200-021-1213-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Finite element modeling of electromagnetic properties in photonic bianisotropic structures

Author information +
History +

Abstract

Given a constitutive relation of the bianisotropic medium, it is not trivial to study how light interacts with the photonic bianisotropic structure due to the limited available means of studying electromagnetic properties in bianisotropic media. In this paper, we study the electromagnetic properties of photonic bianisotropic structures using the finite element method. We prove that the vector wave equation with the presence of bianisotropic is self-adjoint under scalar inner product. we propose a balanced formulation of weak form in the practical implementation, which outperforms the standard formulation in finite element modeling. Furthermore, we benchmark our numerical results obtained from finite element simulation in three different scenarios. These are bianisotropy-dependent reflection and transmission of plane waves incident onto a bianisotropic slab, band structure of bianisotropic photonic crystals with valley-dependent phenomena, and the modal properties of bianisotropic ring resonators. The first two simulated results obtained from our modified weak form yield excellent agreements either with theoretical predictions or available data from the literature, and the modal properties in the last example, i.e., bianisotropic ring resonators as a polarization-dependent optical insulator, are also consistent with the theoretical analyses.

Graphical abstract

Keywords

bianisotropic / finite element method / adjoint

Cite this article

Download citation ▾
Zhongfei XIONG, Weijin CHEN, Zhuoran WANG, Jing XU, Yuntian CHEN. Finite element modeling of electromagnetic properties in photonic bianisotropic structures. Front. Optoelectron., 2021, 14(2): 148‒153 https://doi.org/10.1007/s12200-021-1213-5

References

[1]
Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, von Freymann G, Linden S, Wegener M. Gold helix photonic metamaterial as broadband circular polarizer. Science, 2009, 325(5947): 1513–1515
CrossRef Pubmed Google scholar
[2]
Kriegler C E, Rill M S, Linden S, Wegener M M. Bianisotropic photonic metamaterials. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(2): 367–375
CrossRef Google scholar
[3]
Soukoulis C M, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photonics, 2011, 5(9): 523–530
CrossRef Google scholar
[4]
Guo Q, Gao W, Chen J, Liu Y, Zhang S. Line degeneracy and strong spin-orbit coupling of light with bulk bianisotropic metamaterials. Physical Review Letters, 2015, 115(6): 067402
CrossRef Pubmed Google scholar
[5]
Slobozhanyuk A P, Khanikaev A B, Filonov D S, Smirnova D A, Miroshnichenko A E, Kivshar Y S. Experimental demonstration of topological effects in bianisotropic metamaterials. Scientific Reports, 2016, 6(1): 22270
CrossRef Pubmed Google scholar
[6]
Moritake Y, Tanaka T. Bi-anisotropic Fano resonance in three-dimensional metamaterials. Scientific Reports, 2018, 8(1): 9012
CrossRef Pubmed Google scholar
[7]
Yu Y Z, Kuo C Y, Chern R L, Chan C T. Photonic topological semimetals in bianisotropic metamaterials. Scientific Reports, 2019, 9(1): 18312
CrossRef Pubmed Google scholar
[8]
Pfeiffer C, Grbic A. Bianisotropic metasurfaces for optimal polarization control: analysis and synthesis. Physical Review Applied, 2014, 2(4): 044011
CrossRef Google scholar
[9]
Pfeiffer C, Zhang C, Ray V, Guo L J, Grbic A. Polarization rotation with ultra-thin bianisotropic metasurfaces. Optica, 2016, 3(4): 427–432
CrossRef Google scholar
[10]
Pfeiffer C, Zhang C, Ray V, Guo L J, Grbic A. High performance bianisotropic metasurfaces: asymmetric transmission of light. Physical Review Letters, 2014, 113(2): 023902
CrossRef Pubmed Google scholar
[11]
Odit M, Kapitanova P, Belov P, Alaee R, Rockstuhl C, Kivshar Y S. Experimental realisation of all-dielectric bianisotropic metasurfaces. Applied Physics Letters, 2016, 108(22): 221903
CrossRef Google scholar
[12]
Epstein A, Eleftheriades G V. Arbitrary power-conserving field transformations with passive lossless omega-type bianisotropic metasurfaces. IEEE Transactions on Antennas and Propagation, 2016, 64(9): 3880–3895
CrossRef Google scholar
[13]
Asadchy V S, Díaz-Rubio A, Tretyakov S A. Bianisotropic metasurfaces: physics and applications. Nanophotonics, 2018, 7(6): 1069–1094
CrossRef Google scholar
[14]
Li J, Shen C, Díaz-Rubio A, Tretyakov S A, Cummer S A. Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts. Nature Communications, 2018, 9(1): 1342
CrossRef Pubmed Google scholar
[15]
Li J, Díaz-Rubio A, Shen C, Jia Z, Tretyakov S A, Cummer S. Highly efficient generation of angular momentum with cylindrical bianisotropic metasurfaces. Physical Review Applied, 2019, 11(2): 024016
CrossRef Google scholar
[16]
Chen X, Wu B I, Kong J A, Grzegorczyk T M. Retrieval of the effective constitutive parameters of bianisotropic metamaterials. Physical Review E, 2005, 71(4): 046610
CrossRef Pubmed Google scholar
[17]
Li Z, Aydin K, Ozbay E. Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients. Physical Review E, 2009, 79(2): 026610
CrossRef Pubmed Google scholar
[18]
Ouchetto O, Qiu C W, Zouhdi S, Li L W, Razek A. Homogenization of 3-D periodic bianisotropic metamaterials. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(11): 3893–3898
CrossRef Google scholar
[19]
Hasar U C, Muratoglu A, Bute M, Barroso J J, Ertugrul M. Effective constitutive parameters retrieval method for bianisotropic metamaterials using waveguide measurements. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(5): 1488–1497
CrossRef Google scholar
[20]
Zhao J, Jing X, Wang W, Tian Y, Zhu D, Shi G. Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz region. Optics & Laser Technology, 2017, 95: 56–62
CrossRef Google scholar
[21]
Shaltout A, Shalaev V, Kildishev A. Homogenization of bi-anisotropic metasurfaces. Optics Express, 2013, 21(19): 21941–21950
CrossRef Pubmed Google scholar
[22]
Albooyeh M, Tretyakov S, Simovski C. Electromagnetic characterization of bianisotropic metasurfaces on refractive substrates: General theoretical framework. Annalen der Physik, 2016, 528(9-10): 721–737
CrossRef Google scholar
[23]
Lindell I V, Sihvola A H, Viitanen A J, Tretyakov S A. Electromagnetic Waves in Chiral and Bi-Isotropic Media. Boston: Artech House on Demand, 1994
[24]
Serdiukov A, Semchenk I, Tertyakov S, Sihvola A. Electromagnetics of Bi-Anisotropic Materials-Theory and Application. Singapore: Gordon and Breach, 2001
[25]
Sersic I, Tuambilangana C, Kampfrath T, Koenderink A F. Magnetoelectric point scattering theory for metamaterial scatterers. Physical Review B, 2011, 83(24): 245102
CrossRef Google scholar
[26]
Peng L, Zheng X, Wang K, Sang S, Chen Y, Wang Y G. Layer-by-layer design of bianisotropic metamaterial and its homogenization. Progress In Electromagnetics Research., 2017, 159: 39–47
CrossRef Google scholar
[27]
Xu J, Wu B, Chen Y. Elimination of polarization degeneracy in circularly symmetric bianisotropic waveguides: a decoupled case. Optics Express, 2015, 23(9): 11566–11575
CrossRef Pubmed Google scholar
[28]
Multiphysics COMSOL. 5.2: a finite element analysis, solver and simulation software.
[29]
Dong J W, Chen X D, Zhu H, Wang Y, Zhang X. Valley photonic crystals for control of spin and topology. Nature Materials, 2017, 16(3): 298–302
CrossRef Pubmed Google scholar

Acknowledgements

The authors acknowledge the financial support from the National Key Research and Development Program of China (No. 2019YFB2203100) and the National Natural Science Foundation of China (Grant No. 11874026).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s12200-021-1213-5 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(730 KB)

Accesses

Citations

Detail

Sections
Recommended

/