PTX-symmetric metasurfaces for sensing applications

Zhilu YE, Minye YANG, Liang ZHU, Pai-Yen CHEN

PDF(2167 KB)
PDF(2167 KB)
Front. Optoelectron. ›› 2021, Vol. 14 ›› Issue (2) : 211-220. DOI: 10.1007/s12200-021-1204-6
RESEARCH ARTICLE
RESEARCH ARTICLE

PTX-symmetric metasurfaces for sensing applications

Author information +
History +

Abstract

In this paper, we introduce an ultra-sensitive optical sensing platform based on the parity-time-reciprocal scaling (PTX)-symmetric non-Hermitian metasurfaces, which leverage exotic singularities, such as the exceptional point (EP) and the coherent perfect absorber-laser (CPAL) point, to significantly enhance the sensitivity and detectability of photonic sensors. We theoretically studied scattering properties and physical limitations of the PTX-symmetric metasurface sensing systems with an asymmetric, unbalanced gain-loss profile. The PTX-symmetric metasurfaces can exhibit similar scattering properties as their PT-symmetric counterparts at singular points, while achieving a higher sensitivity and a larger modulation depth, possible with the reciprocal-scaling factor (i.e., X transformation). Specifically, with the optimal reciprocal-scaling factor or near-zero phase offset, the proposed PTX-symmetric metasurface sensors operating around the EP or CPAL point may achieve an over 100 dB modulation depth, thus paving a promising route toward the detection of small-scale perturbations caused by, for example, molecular, gaseous, and biochemical surface adsorbates.

Graphical abstract

Keywords

parity-time symmetry / exceptional point (EP) / laser oscillator / coherent perfect absorber / electromagnetic sensor / radio frequency (RF) and microwave sensing / optical sensing

Cite this article

Download citation ▾
Zhilu YE, Minye YANG, Liang ZHU, Pai-Yen CHEN. PTX-symmetric metasurfaces for sensing applications. Front. Optoelectron., 2021, 14(2): 211‒220 https://doi.org/10.1007/s12200-021-1204-6

References

[1]
Rodriguez S, Ollmar S, Waqar M, Rusu A. A batteryless sensor ASIC for implantable bio-impedance applications. IEEE Transactions on Biomedical Circuits and Systems, 2016, 10(3): 533–544
CrossRef Pubmed Google scholar
[2]
Yvanoff M, Venkataraman J. A feasibility study of tissue characterization using LC sensors. IEEE Transactions on Antennas and Propagation, 2009, 57(4): 885–893
CrossRef Google scholar
[3]
Tan Q, Luo T, Xiong J, Kang H, Ji X, Zhang Y, Yang M, Wang X, Xue C, Liu J, Zhang W. A harsh environment-oriented wireless passive temperature sensor realized by LTCC technology. Sensors (Basel, Switzerland), 2014, 14(3): 4154–4166
CrossRef Pubmed Google scholar
[4]
Huang H, Chen P Y, Hung C H, Gharpurey R, Akinwande D. A zero power harmonic transponder sensor for ubiquitous wireless μL liquid-volume monitoring. Scientific Reports, 2016, 6(1): 18795
CrossRef Pubmed Google scholar
[5]
Chen L Y, Tee B C K, Chortos A L, Schwartz G, Tse V, Lipomi D J, Wong H S, McConnell M V, Bao Z. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nature Communications, 2014, 5(1): 5028
CrossRef Pubmed Google scholar
[6]
Chen P, Rodger D C, Saati S, Humayun M S, Tai Y. Microfabricated implantable parylene-based wireless passive intraocular pressure sensors. Journal of Microelectromechanical Systems, 2008, 17(6): 1342–1351
CrossRef Google scholar
[7]
Chen P, Saati S, Varma R, Humayun M S, Tai Y. Wireless intraocular pressure sensing using microfabricated minimally invasive flexible-coiled LC sensor implant. Journal of Microelectromechanical Systems, 2010, 19(4): 721–734
CrossRef Google scholar
[8]
Nopper R, Niekrawietz R, Reindl L. Wireless readout of passive LC sensors. IEEE Transactions on Instrumentation and Measurement, 2010, 59(9): 2450–2457
CrossRef Google scholar
[9]
Lopez-Higuera J M, Cobo L R, Incera A Q, Cobo A. Fiber optic sensors in structural health monitoring. Journal of Lightwave Technology, 2011, 29(4): 587–608
CrossRef Google scholar
[10]
Lee B H, Kim Y H, Park K S, Eom J B, Kim M J, Rho B S, Choi H Y. Interferometric fiber optic sensors. Sensors (Basel, Switzerland), 2012, 12(3): 2467–2486
CrossRef Pubmed Google scholar
[11]
Liao L, Lu H B, Li J C, Liu C, Fu D J, Liu Y L. The sensitivity of gas sensor based on single ZnO nanowire modulated by helium ion radiation. Applied Physics Letters, 2007, 91: 173110
[12]
Wanekaya A K, Chen W, Myung N V, Mulchandani A. Nanowire-based electrochemical biosensors. Electroanalysis, 2006, 18(6): 533–550
CrossRef Google scholar
[13]
Zhu G, Yang W Q, Zhang T, Jing Q, Chen J, Zhou Y S, Bai P, Wang Z L. Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Letters, 2014, 14(6): 3208–3213
CrossRef Pubmed Google scholar
[14]
Xiao Z, Li H, Kottos T, Alù A. Enhanced sensing and nondegraded thermal noise performance based on PT-symmetric electronic circuits with a sixth-order exceptional point. Physical Review Letters, 2019, 123(21): 213901
CrossRef Pubmed Google scholar
[15]
Chen P Y, El-Ganainy R. Exceptional points enhance wireless readout. Nature Electronics, 2019, 2(8): 323–324
CrossRef Google scholar
[16]
Hodaei H, Hassan A U, Wittek S, Garcia-Gracia H, El-Ganainy R, Christodoulides D N, Khajavikhan M. Enhanced sensitivity at higher-order exceptional points. Nature, 2017, 548(7666): 187–191
CrossRef Pubmed Google scholar
[17]
Chen P Y, Sakhdari M, Hajizadegan M, Cui Q, Cheng M M C, El-Ganainy R, Alù A. Generalized parity–time symmetry condition for enhanced sensor telemetry. Nature Electronics, 2018, 1(5): 297–304
CrossRef Google scholar
[18]
Dong Z, Li Z, Yang F, Qiu C W, Ho J S. Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point. Nature Electronics, 2019, 2(8): 335–342
CrossRef Google scholar
[19]
Sakhdari M, Estakhri N M, Bagci H, Chen P Y. Low-threshold lasing and coherent perfect absorption in generalized PT-symmetric optical structures. Physical Review Applied, 2018, 10(2): 024030
CrossRef Google scholar
[20]
Farhat M, Yang M, Ye Z, Chen P Y. PT-symmetric absorber-laser enables electromagnetic sensors with unprecedented sensitivity. ACS Photonics, 2020, 7(8): 2080–2088
CrossRef Google scholar
[21]
Yang M, Ye Z, Farhat M, Chen P Y. Enhanced radio-frequency sensors based on a self-dual emitter-absorber. Physical Review Applied, 2021, 15(1): 014026
CrossRef Google scholar
[22]
Bender C M, Boettcher S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Physical Review Letters, 1998, 80(24): 5243–5246
CrossRef Google scholar
[23]
Sakhdari M, Hajizadegan M, Zhong Q, Christodoulides D N, El-Ganainy R, Chen P Y. Experimental observation of PT symmetry breaking near divergent exceptional points. Physical Review Letters, 2019, 123(19): 193901
CrossRef Pubmed Google scholar
[24]
Chen W, Kaya Özdemir Ş, Zhao G, Wiersig J, Yang L. Exceptional points enhance sensing in an optical microcavity. Nature, 2017, 548(7666): 192–196PMID:28796206
CrossRef Google scholar
[25]
Longhi S. PT-symmetric laser absorber. Physical Review A, 2010, 82(3): 031801
CrossRef Google scholar
[26]
Ye Z, Farhat M, Chen P Y. Tunability and switching of Fano and Lorentz resonances in PTX-symmetric electronic systems. Applied Physics Letters, 2020, 117(3): 031101
CrossRef Google scholar
[27]
Chen P Y, Jung J. PT symmetry and singularity-enhanced sensing based on photoexcited graphene metasurfaces. Physical Review Applied, 2016, 5(6): 064018
CrossRef Google scholar
[28]
Sakhdari M, Farhat M, Chen P Y. PT-symmetric metasurfaces: wave manipulation and sensing using singular points. New Journal of Physics, 2017, 19(6): 065002
CrossRef Google scholar

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(2167 KB)

Accesses

Citations

Detail

Sections
Recommended

/