Metalenses: from design principles to functional applications

Xiao FU, Haowen LIANG, Juntao Li

PDF(6678 KB)
PDF(6678 KB)
Front. Optoelectron. ›› 2021, Vol. 14 ›› Issue (2) : 170-186. DOI: 10.1007/s12200-021-1201-9
REVIEW ARTICLE
REVIEW ARTICLE

Metalenses: from design principles to functional applications

Author information +
History +

Abstract

Lens is a basic optical element that is widely used in daily life, such as in cameras, glasses, and microscopes. Conventional lenses are designed based on the classical refractive optics, which results in inevitable imaging aberrations, such as chromatic aberration, spherical aberration and coma. To solve these problems, conventional imaging systems impose multiple curved lenses with different thicknesses and materials to eliminate these aberrations. As a unique photonic technology, metasurfaces can accurately manipulate the wavefront of light to produce fascinating and peculiar optical phenomena, which has stimulated researchers’ extensive interests in the field of planar optics. Starting from the introduction of phase modulation methods, this review summarizes the design principles and characteristics of metalenses. Although the imaging quality of existing metalenses is not necessarily better than that of conventional lenses, the multi-dimensional and multi-degree-of-freedom control of metasurfaces provides metalenses with novel functions that are extremely challenging or impossible to achieve with conventional lenses.

Graphical abstract

Keywords

metalens / achromatic aberration / phase modulation / wavefront manipulation

Cite this article

Download citation ▾
Xiao FU, Haowen LIANG, Juntao Li. Metalenses: from design principles to functional applications. Front. Optoelectron., 2021, 14(2): 170‒186 https://doi.org/10.1007/s12200-021-1201-9

References

[1]
Veselago V G. The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics Uspekhi, 1968, 10(4): 509–514
CrossRef Google scholar
[2]
Pendry J B, Holden A J, Stewart W J, Youngs I. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 1996, 76(25): 4773–4776
CrossRef Pubmed Google scholar
[3]
Pendry J B, Holden A J, Robbins D J, Stewart W J. Low frequency plasmons in thin-wire structures. Journal of Physics Condensed Matter, 1998, 10(22): 4785–4809
CrossRef Pubmed Google scholar
[4]
Pendry J B, Holden A J, Robbins D J, Stewart W J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075–2084
CrossRef Google scholar
[5]
Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 2000, 84(18): 4184–4187
CrossRef Pubmed Google scholar
[6]
Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001, 292(5514): 77–79
CrossRef Pubmed Google scholar
[7]
Houck A A, Brock J B, Chuang I L. Experimental observations of a left-handed material that obeys Snell’s law. Physical Review Letters, 2003, 90(13): 137401
CrossRef Pubmed Google scholar
[8]
Parazzoli C G, Greegor R B, Li K, Koltenbah B E C, Tanielian M. Experimental verification and simulation of negative index of refraction using Snell’s law. Physical Review Letters, 2003, 90(10): 107401
CrossRef Pubmed Google scholar
[9]
Pendry J B. Negative refraction makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966–3969
CrossRef Pubmed Google scholar
[10]
Pendry J B, Ramakrishna S A. Refining the perfect lens. Physica B, Condensed Matter, 2003, 338(1–4): 329–332
CrossRef Google scholar
[11]
Fang N, Lee H, Sun C, Zhang X. Sub-diffraction-limited optical imaging with a silver superlens. Science, 2005, 308(5721): 534–537
CrossRef Pubmed Google scholar
[12]
Liu Z, Lee H, Xiong Y, Sun C, Zhang X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 2007, 315(5819): 1686
CrossRef Pubmed Google scholar
[13]
Leonhardt U. Optical conformal mapping. Science, 2006, 312(5781): 1777–1780
CrossRef Pubmed Google scholar
[14]
Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields. Science, 2006, 312(5781): 1780–1782
CrossRef Pubmed Google scholar
[15]
Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314(5801): 977–980
CrossRef Pubmed Google scholar
[16]
Engheta N. Thin absorbing screens using metamaterial surfaces. In: Proceedings of IEEE Antennas and Propagation Society International Symposium. San Antonio: IEEE, 2002, 392–395
[17]
Tretyakov S A, Maslovski S I. Thin absorbing structure for all incidence angles based on the use of a high-impedance surface. Microwave and Optical Technology Letters, 2003, 38(3): 175–178
CrossRef Google scholar
[18]
Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J. Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Physical Review B, 2009, 79(12): 125104
CrossRef Google scholar
[19]
Liu X, Starr T, Starr A F, Padilla W J. Infrared spatial and frequency selective metamaterial with near-unity absorbance. Physical Review Letters, 2010, 104(20): 207403
CrossRef Pubmed Google scholar
[20]
Hao J, Yuan Y, Ran L, Jiang T, Kong J A, Chan C T, Zhou L. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Physical Review Letters, 2007, 99(6): 063908
CrossRef Pubmed Google scholar
[21]
Zhang S, Park Y S, Li J, Lu X, Zhang W, Zhang X. Negative refractive index in chiral metamaterials. Physical Review Letters, 2009, 102(2): 023901
CrossRef Pubmed Google scholar
[22]
Chen H T, Padilla W J, Cich M J, Azad A K, Averitt R D, Taylor A J. A metamaterial solid-state terahertz phase modulator. Nature Photonics, 2009, 3(3): 148–151
CrossRef Google scholar
[23]
Burresi M, Diessel D, van Oosten D, Linden S, Wegener M, Kuipers L. Negative-index metamaterials: looking into the unit cell. Nano Letters, 2010, 10(7): 2480–2483
CrossRef Pubmed Google scholar
[24]
Hsiao H H, Chu C H, Tsai D P. Fundamentals and applications of metasurfaces. Small Methods, 2017, 1(4): 1600064
[25]
He Q, Sun S, Xiao S, Zhou L. High-efficiency metasurfaces: principles, realizations, and applications. Advanced Optical Materials, 2018, 6(19): 1800415
CrossRef Google scholar
[26]
Chen S, Li Z, Zhang Y, Cheng H, Tian J. Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics. Advanced Optical Materials, 2018, 6(13): 1800104
CrossRef Google scholar
[27]
Hu Y, Wang X, Luo X, Ou X, Li L, Chen Y, Ping Yang, Wang S, Duan H. All-dielectric metasurfaces for polarization manipulation: principles and emerging applications. Nanophotonics, 2020, 9(12): 3755–3780
CrossRef Google scholar
[28]
Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334(6054): 333–337
CrossRef Pubmed Google scholar
[29]
Chen W T, Zhu A Y, Khorasaninejad M, Shi Z, Sanjeev V, Capasso F. Immersion meta-lenses at visible wavelengths for nanoscale imaging. Nano Letters, 2017, 17(5): 3188–3194
CrossRef Pubmed Google scholar
[30]
Tseng M L, Hsiao H H, Chu C H, Chen M K, Sun G, Liu A Q, Tsai D P. Metalenses: advances and applications. Advanced Optical Materials, 2018, 6(18): 1800554
CrossRef Google scholar
[31]
Liang H, Martins A, Borges B H V, Zhou J, Martins E R, Li J, Krauss T F. High performance metalenses: numerical aperture, aberrations, chromaticity, and trade-offs. Optica, 2019, 6(12): 1461
CrossRef Google scholar
[32]
Moon S W, Kim Y, Yoon G, Rho J. Recent progress on ultrathin metalenses for flat optics. iScience, 2020, 23(12): 101877
[33]
Zou X, Zheng G, Yuan Q, Zang W, Chen R, Li T, Li L, Wang S, Wang Z, Zhu S. Imaging based on metalenses. PhotoniX, 2020, 1(1): 2
CrossRef Google scholar
[34]
Huang L, Chen X, Mühlenbernd H, Li G, Bai B, Tan Q, Jin G, Zentgraf T, Zhang S. Dispersionless phase discontinuities for controlling light propagation. Nano Letters, 2012, 12(11): 5750–5755
CrossRef Pubmed Google scholar
[35]
Zhou Z, Li J, Su R, Yao B, Fang H, Li K, Zhou L, Liu J, Stellinga D, Reardon C P, Krauss T F, Wang X. Efficient silicon metasurfaces for visible light. ACS Photonics, 2017, 4(3): 544–551
CrossRef Google scholar
[36]
Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraon A. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica, 2017, 4(6): 625
CrossRef Google scholar
[37]
Lawrence N, Trevino J, Dal Negro L. Aperiodic arrays of active nanopillars for radiation engineering. Journal of Applied Physics, 2012, 111(11): 113101
CrossRef Google scholar
[38]
Li X, Xiao S, Cai B, He Q, Cui T J, Zhou L. Flat metasurfaces to focus electromagnetic waves in reflection geometry. Optics Letters, 2012, 37(23): 4940–4942
CrossRef Pubmed Google scholar
[39]
Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nature Materials, 2012, 11(5): 426–431
CrossRef Pubmed Google scholar
[40]
Sun S, Yang K Y, Wang C M, Juan T K, Chen W T, Liao C Y, He Q, Xiao S, Kung W T, Guo G Y, Zhou L, Tsai D P. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Letters, 2012, 12(12): 6223–6229
CrossRef Pubmed Google scholar
[41]
Walther B, Helgert C, Rockstuhl C, Setzpfandt F, Eilenberger F, Kley E B, Lederer F, Tünnermann A, Pertsch T. Spatial and spectral light shaping with metamaterials. Advanced Materials, 2012, 24(47): 6300–6304
CrossRef Pubmed Google scholar
[42]
Chen W T, Yang K Y, Wang C M, Huang Y W, Sun G, Chiang I D, Liao C Y, Hsu W L, Lin H T, Sun S, Zhou L, Liu A Q, Tsai D P. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Letters, 2014, 14(1): 225–230
CrossRef Pubmed Google scholar
[43]
Jiang Z H, Yun S, Lin L, Bossard J A, Werner D H, Mayer T S. Tailoring dispersion for broadband low-loss optical metamaterials using deep-subwavelength Inclusions. Scientific Reports, 2013, 3(1): 1571
CrossRef Pubmed Google scholar
[44]
Pfeiffer C, Grbic A. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Physical Review Letters, 2013, 110(19): 197401
CrossRef Pubmed Google scholar
[45]
Yang Y, Wang W, Moitra P, Kravchenko I I, Briggs D P, Valentine J. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Letters, 2014, 14(3): 1394–1399
CrossRef Pubmed Google scholar
[46]
Yao Y, Shankar R, Kats M A, Song Y, Kong J, Loncar M, Capasso F. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Letters, 2014, 14(11): 6526–6532
CrossRef Pubmed Google scholar
[47]
Aieta F, Kats M A, Genevet P, Capasso F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science, 2015, 347(6228): 1342–1345
CrossRef Pubmed Google scholar
[48]
Decker M, Staude I, Falkner M, Dominguez J, Neshev D N, Brener I, Pertsch T, Kivshar Y S. High-efficiency dielectric Huygens’ surfaces. Advanced Optical Materials, 2015, 3(6): 813–820
CrossRef Google scholar
[49]
Zhu W, Song Q, Yan L, Zhang W, Wu P C, Chin L K, Cai H, Tsai D P, Shen Z X, Deng T W, Ting S K, Gu Y, Lo G Q, Kwong D L, Yang Z C, Huang R, Liu A Q, Zheludev N. A flat lens with tunable phase gradient by using random access reconfigurable metamaterial. Advanced Materials, 2015, 27(32): 4739–4743
CrossRef Pubmed Google scholar
[50]
Almeida E, Bitton O, Prior Y. Nonlinear metamaterials for holography. Nature Communications, 2016, 7(1): 12533
CrossRef Pubmed Google scholar
[51]
Almeida E, Shalem G, Prior Y. Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces. Nature Communications, 2016, 7(1): 10367
CrossRef Pubmed Google scholar
[52]
Hu J, Zhao X, Lin Y, Zhu A, Zhu X, Guo P, Cao B, Wang C. All-dielectric metasurface circular dichroism waveplate. Scientific Reports, 2017, 7(1): 41893
CrossRef Pubmed Google scholar
[53]
Shitrit N, Bretner I, Gorodetski Y, Kleiner V, Hasman E. Optical spin Hall effects in plasmonic chains. Nano Letters, 2011, 11(5): 2038–2042
CrossRef Pubmed Google scholar
[54]
Chen X, Huang L, Mühlenbernd H, Li G, Bai B, Tan Q, Jin G, Qiu C W, Zhang S, Zentgraf T. Dual-polarity plasmonic metalens for visible light. Nature Communications, 2012, 3(1): 1198
CrossRef Pubmed Google scholar
[55]
Kang M, Chen J, Wang X L, Wang H T. Twisted vector field from an inhomogeneous and anisotropic metamaterial. Journal of the Optical Society of America B, Optical Physics, 2012, 29(4): 572–576
CrossRef Google scholar
[56]
Kang M, Feng T, Wang H T, Li J. Wave front engineering from an array of thin aperture antennas. Optics Express, 2012, 20(14): 15882–15890
CrossRef Pubmed Google scholar
[57]
Li G, Kang M, Chen S, Zhang S, Pun E Y, Cheah K W, Li J. Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light. Nano Letters, 2013, 13(9): 4148–4151
CrossRef Pubmed Google scholar
[58]
Lin D, Fan P, Hasman E, Brongersma M L. Dielectric gradient metasurface optical elements. Science, 2014, 345(6194): 298–302
CrossRef Pubmed Google scholar
[59]
Shaltout A, Liu J, Shalaev V M, Kildishev A V. Optically active metasurface with non-chiral plasmonic nanoantennas. Nano Letters, 2014, 14(8): 4426–4431
CrossRef Pubmed Google scholar
[60]
Ding X, Monticone F, Zhang K, Zhang L, Gao D, Burokur S N, de Lustrac A, Wu Q, Qiu C W, Alù A. Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency. Advanced Materials, 2015, 27(7): 1195–1200
CrossRef Pubmed Google scholar
[61]
Kim J, Li Y, Miskiewicz M N, Oh C, Kudenov M W, Escuti M J. Fabrication of ideal geometric-phase holograms with arbitrary wavefronts. Optica, 2015, 2(11): 958
CrossRef Google scholar
[62]
Li G, Chen S, Pholchai N, Reineke B, Wong P W, Pun E Y, Cheah K W, Zentgraf T, Zhang S. Continuous control of the nonlinearity phase for harmonic generations. Nature Materials, 2015, 14(6): 607–612
CrossRef Pubmed Google scholar
[63]
Luo W, Xiao S, He Q, Sun S, Zhou L. Photonic spin hall effect with nearly 100% efficiency. Advanced Optical Materials, 2015, 3(8): 1102–1108
CrossRef Google scholar
[64]
Wen D, Yue F, Li G, Zheng G, Chan K, Chen S, Chen M, Li K F, Wong P W, Cheah K W, Pun E Y, Zhang S, Chen X. Helicity multiplexed broadband metasurface holograms. Nature Communications, 2015, 6(1): 8241
CrossRef Pubmed Google scholar
[65]
Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S. Metasurface holograms reaching 80% efficiency. Nature Nanotechnology, 2015, 10(4): 308–312
CrossRef Pubmed Google scholar
[66]
Ee H S, Agarwal R. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Letters, 2016, 16(4): 2818–2823
CrossRef Pubmed Google scholar
[67]
Khorasaninejad M, Ambrosio A, Kanhaiya P, Capasso F. Broadband and chiral binary dielectric meta-holograms. Science Advances, 2016, 2(5): e1501258
CrossRef Pubmed Google scholar
[68]
Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science, 2016, 352(6290): 1190–1194
CrossRef Pubmed Google scholar
[69]
Chen W T, Khorasaninejad M, Zhu A Y, Oh J, Devlin R C, Zaidi A, Capasso F. Generation of wavelength-independent subwavelength Bessel beams using metasurfaces. Light, Science & Applications, 2017, 6(5): e16259
CrossRef Pubmed Google scholar
[70]
Luo W, Sun S, Xu H X, He Q, Zhou L. Transmissive ultrathin pancharatnam-berry metasurfaces with nearly 100% efficiency. Physical Review Applied, 2017, 7(4): 044033
CrossRef Google scholar
[71]
Ma Z, Li Y, Li Y, Gong Y, Maier S A, Hong M. All-dielectric planar chiral metasurface with gradient geometric phase. Optics Express, 2018, 26(5): 6067–6078
CrossRef Pubmed Google scholar
[72]
Xu R, Chen P, Tang J, Duan W, Ge S J, Ma L L, Wu R X, Hu W, Lu Y Q. Perfect higher-order Poincaré sphere beams from digitalized geometric phases. Physical Review Applied, 2018, 10(3): 034061
CrossRef Google scholar
[73]
Yoon G, Lee D, Nam K T, Rho J. “Crypto-display” in dual-mode metasurfaces by simultaneous control of phase and spectral responses. ACS Nano, 2018, 12(7): 6421–6428
CrossRef Pubmed Google scholar
[74]
Ansari M A, Kim I, Lee D, Waseem M H, Zubair M, Mahmood N, Badloe T, Yerci S, Tauqeer T, Mehmood M Q, Rho J. A spin-encoded all-dielectric metahologram for visible light. Laser & Photonics Reviews, 2019, 13(5): 1900065
CrossRef Google scholar
[75]
Xu T, Du C, Wang C, Luo X. Subwavelength imaging by metallic slab lens with nanoslits. Applied Physics Letters, 2007, 91(20): 201501
CrossRef Google scholar
[76]
Arbabi A, Horie Y, Ball A J, Bagheri M, Faraon A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nature Communications, 2015, 6(1): 7069
CrossRef Pubmed Google scholar
[77]
Khorasaninejad M, Zhu A Y, Roques-Carmes C, Chen W T, Oh J, Mishra I, Devlin R C, Capasso F. Polarization-insensitive metalenses at visible wavelengths. Nano Letters, 2016, 16(11): 7229–7234
CrossRef Pubmed Google scholar
[78]
Sun W, He Q, Sun S, Zhou L. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations. Light, Science & Applications, 2016, 5(1): e16003
CrossRef Pubmed Google scholar
[79]
Lalanne P, Astilean S, Chavel P, Cambril E, Launois H. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. Optics Letters, 1998, 23(14): 1081–1083
CrossRef Pubmed Google scholar
[80]
Schonbrun E, Seo K, Crozier K B. Reconfigurable imaging systems using elliptical nanowires. Nano Letters, 2011, 11(10): 4299–4303
CrossRef Pubmed Google scholar
[81]
West P R, Stewart J L, Kildishev A V, Shalaev V M, Shkunov V V, Strohkendl F, Zakharenkov Y A, Dodds R K, Byren R. All-dielectric subwavelength metasurface focusing lens. Optics Express, 2014, 22(21): 26212–26221
CrossRef Pubmed Google scholar
[82]
Zhang Q, Li M, Liao T, Cui X. Design of beam deflector, splitters, wave plates and metalens using photonic elements with dielectric metasurface. Optics Communications, 2018, 411: 93–100
CrossRef Google scholar
[83]
Yu N, Aieta F, Genevet P, Kats M A, Gaburro Z, Capasso F. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Letters, 2012, 12(12): 6328–6333
CrossRef Pubmed Google scholar
[84]
Yu N, Genevet P, Aieta F, Kats M A, Blanchard R, Aoust G, Tetienne J P, Gaburro Z, Capasso F. Flat optics: controlling wavefronts with optical antenna metasurfaces. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(3): 4700423
CrossRef Google scholar
[85]
Aieta F, Genevet P, Kats M A, Yu N, Blanchard R, Gaburro Z, Capasso F. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Letters, 2012, 12(9): 4932–4936
CrossRef Pubmed Google scholar
[86]
Ni X, Ishii S, Kildishev A V, Shalaev V M. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light, Science & Applications, 2013, 2(4): e72
CrossRef Google scholar
[87]
Balthasar Mueller J P, Rubin N A, Devlin R C, Groever B, Capasso F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Physical Review Letters, 2017, 118(11): 113901
CrossRef Pubmed Google scholar
[88]
Wang S, Wu P C, Su V C, Lai Y C, Hung Chu C, Chen J W, Lu S H, Chen J, Xu B, Kuan C H, Li T, Zhu S, Tsai D P. Broadband achromatic optical metasurface devices. Nature Communications, 2017, 8(1): 187
CrossRef Pubmed Google scholar
[89]
Chen W T, Zhu A Y, Sanjeev V, Khorasaninejad M, Shi Z, Lee E, Capasso F. A broadband achromatic metalens for focusing and imaging in the visible. Nature Nanotechnology, 2018, 13(3): 220–226
CrossRef Pubmed Google scholar
[90]
Chen W T, Zhu A Y, Sisler J, Huang Y W, Yousef K M A, Lee E, Qiu C W, Capasso F. Broadband achromatic metasurface-refractive optics. Nano Letters, 2018, 18(12): 7801–7808
CrossRef Pubmed Google scholar
[91]
Li S, Li X, Wang G, Liu S, Zhang L, Zeng C, Wang L, Sun Q, Zhao W, Zhang W. Multidimensional manipulation of photonic spin Hall effect with a single-layer dielectric metasurface. Advanced Optical Materials, 2019, 7(5): 1801365
[92]
Tian S, Guo H, Hu J, Zhuang S. Dielectric longitudinal bifocal metalens with adjustable intensity and high focusing efficiency. Optics Express, 2019, 27(2): 680–688
CrossRef Pubmed Google scholar
[93]
Chen W T, Török P, Foreman M R, Liao C Y, Tsai W Y, Wu P R, Tsai D P. Integrated plasmonic metasurfaces for spectropolarimetry. Nanotechnology, 2016, 27(22): 224002
CrossRef Pubmed Google scholar
[94]
Yuan Y, Sun S, Chen Y, Zhang K, Ding X, Ratni B, Wu Q, Burokur S N, Qiu C W. A fully phase-modulated metasurface as an energy-controllable circular polarization router. Advanced Science, 2020, 7(18): 2001437
CrossRef Pubmed Google scholar
[95]
Zhang J, Liang Y, Wu S, Xu W, Zheng S, Zhang L. Single-layer dielectric metasurface with giant chiroptical effects combining geometric and propagation phase. Optics Communications, 2021, 478: 126405
CrossRef Google scholar
[96]
Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nature Nanotechnology, 2015, 10(11): 937–943
CrossRef Pubmed Google scholar
[97]
Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraon A. High efficiency double-wavelength dielectric metasurface lenses with dichroic birefringent meta-atoms. Optics Express, 2016, 24(16): 18468–18477
CrossRef Pubmed Google scholar
[98]
Liu Z, Li Z, Liu Z, Li J, Cheng H, Yu P, Liu W, Tang C, Gu C, Li J, Chen S, Tian J. High-performance broadband circularly polarized beam deflector by mirror effect of multinanorod metasurfaces. Advanced Functional Materials, 2015, 25(34): 5428–5434
CrossRef Google scholar
[99]
Nagasaki Y, Suzuki M, Takahara J. All-dielectric dual-color pixel with subwavelength resolution. Nano Letters, 2017, 17(12): 7500–7506
CrossRef Pubmed Google scholar
[100]
Liang H, Lin Q, Xie X, Sun Q, Wang Y, Zhou L, Liu L, Yu X, Zhou J, Krauss T F, Li J. Ultrahigh numerical aperture metalens at visible wavelengths. Nano Letters, 2018, 18(7): 4460–4466
CrossRef Pubmed Google scholar
[101]
Liu C H, Zheng J, Colburn S, Fryett T K, Chen Y, Xu X, Majumdar A. Ultrathin van der Waals metalenses. Nano Letters, 2018, 18(11): 6961–6966
CrossRef Pubmed Google scholar
[102]
Khorasaninejad M, Aieta F, Kanhaiya P, Kats M A, Genevet P, Rousso D, Capasso F. Achromatic metasurface lens at telecommunication wavelengths. Nano Letters, 2015, 15(8): 5358–5362
CrossRef Pubmed Google scholar
[103]
Shi Z, Khorasaninejad M, Huang Y W, Roques-Carmes C, Zhu A Y, Chen W T, Sanjeev V, Ding Z W, Tamagnone M, Chaudhary K, Devlin R C, Qiu C W, Capasso F. Single-layer metasurface with controllable multiwavelength functions. Nano Letters, 2018, 18(4): 2420–2427
CrossRef Pubmed Google scholar
[104]
Shrestha S, Overvig A C, Lu M, Stein A, Yu N. Broadband achromatic dielectric metalenses. Light, Science & Applications, 2018, 7(1): 85
CrossRef Pubmed Google scholar
[105]
Fan Z B, Qiu H Y, Zhang H L, Pang X N, Zhou L D, Liu L, Ren H, Wang Q H, Dong J W. A broadband achromatic metalens array for integral imaging in the visible. Light, Science & Applications, 2019, 8(1): 67
CrossRef Pubmed Google scholar
[106]
Wang S, Wu P C, Su V C, Lai Y C, Chen M K, Kuo H Y, Chen B H, Chen Y H, Huang T T, Wang J H, Lin R M, Kuan C H, Li T, Wang Z, Zhu S, Tsai D P. A broadband achromatic metalens in the visible. Nature Nanotechnology, 2018, 13(3): 227–232
CrossRef Pubmed Google scholar
[107]
Lin R J, Su V C, Wang S, Chen M K, Chung T L, Chen Y H, Kuo H Y, Chen J W, Chen J, Huang Y T, Wang J H, Chu C H, Wu P C, Li T, Wang Z, Zhu S, Tsai D P. Achromatic metalens array for full-colour light-field imaging. Nature Nanotechnology, 2019, 14(3): 227–231
CrossRef Pubmed Google scholar
[108]
Ye M, Ray V, Yi Y S. Achromatic flat subwavelength grating lens over whole visible bandwidths. IEEE Photonics Technology Letters, 2018, 30(10): 955–958
CrossRef Google scholar
[109]
Zhang Z, Cui Z, Liu Y, Wang S, Staude I, Yang Z, Zhao M. Design of a broadband achromatic dielectric metalens for linear polarization in the near-infrared spectrum. OSA Continuum, 2018, 1(3): 882–890
CrossRef Google scholar
[110]
Chen W T, Zhu A Y, Sisler J, Bharwani Z, Capasso F. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nature Communications, 2019, 10(1): 355
CrossRef Pubmed Google scholar
[111]
Cheng Q, Ma M, Yu D, Shen Z, Xie J, Wang J, Xu N, Guo H, Hu W, Wang S, Li T, Zhuang S. Broadband achromatic metalens in terahertz regime. Science Bulletin, 2019, 64(20): 1525–1531
CrossRef Google scholar
[112]
Zhao F, Jiang X, Li S, Chen H, Liang G, Wen Z, Zhang Z, Chen G. Optimization-free approach for broadband achromatic metalens of high-numerical-aperture with high-index dielectric metasurface. Journal of Physics D, Applied Physics, 2019, 52(50): 505110
CrossRef Google scholar
[113]
Chung H, Miller O D. High-NA achromatic metalenses by inverse design. Optics Express, 2020, 28(5): 6945–6965
CrossRef Pubmed Google scholar
[114]
Ou K, Yu F, Li G, Wang W, Miroshnichenko A E, Huang L, Wang P, Li T, Li Z, Chen X, Lu W. Mid-infrared polarization-controlled broadband achromatic metadevice. Science Advances, 2020, 6(37): eabc0711
CrossRef Pubmed Google scholar
[115]
Sisler J, Chen WT, Zhu AY, Capasso F. Controlling dispersion in multifunctional metasurfaces. APL Photonics, 2020, 5(5): 056107
[116]
Zhao F, Li Z, Dai X, Liao X, Li S, Cao J, Shang Z, Zhang Z, Liang G, Chen G, Li H, Wen Z. Broadband achromatic sub-diffraction focusing by an amplitude-modulated terahertz metalens. Advanced Optical Materials, 2020, 8(21): 2000842
CrossRef Google scholar
[117]
Yoon G, Kim I, Rho J. Challenges in fabrication towards realization of practical metamaterials. Microelectronic Engineering, 2016, 163: 7–20
CrossRef Google scholar
[118]
Zuo R, Liu W, Cheng H, Chen S, Tian J. Breaking the diffraction limit with radially polarized light based on dielectric metalenses. Advanced Optical Materials, 2018, 6(21): 1800795
CrossRef Google scholar
[119]
Li Z, Zhang T, Wang Y, Kong W, Zhang J, Huang Y, Wang C, Li X, Pu M, Luo X. Achromatic broadband super-resolution imaging by super-oscillatory metasurface. Laser & Photonics Reviews, 2018, 12(10): 1800064
CrossRef Google scholar
[120]
Lin R, Li X. Multifocal metalens based on multilayer Pancharatnam–Berry phase elements architecture. Optics Letters, 2019, 44(11): 2819
CrossRef Google scholar
[121]
Gao S, Park C S, Zhou C, Lee S S, Choi D Y. Twofold polarization-selective all-dielectric Trifoci metalens for linearly polarized visible light. Advanced Optical Materials, 2019, 7(21): 1900883
CrossRef Google scholar
[122]
Khorasaninejad M, Chen W T, Zhu A Y, Oh J, Devlin R C, Rousso D, Capasso F. Multispectral chiral imaging with a metalens. Nano Letters, 2016, 16(7): 4595–4600
CrossRef Pubmed Google scholar
[123]
Zang X, Ding H, Intaravanne Y, Chen L, Peng Y, Xie J, Ke Q, Balakin A V, Shkurinov A P, Chen X, Zhu Y, Zhuang S. A multi-foci metalens with polarization-rotated focal points. Laser & Photonics Reviews, 2019, 13(12): 1900182
CrossRef Google scholar
[124]
Aiello M D, Backer A S, Sapon A J, Smits J, Perreault J D, Llull P, Acosta V M. Achromatic varifocal metalens for the visible spectrum. ACS Photonics, 2019, 6(10): 2432–2440
CrossRef Google scholar
[125]
Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraji-Dana M, Faraon A. MEMS-tunable dielectric metasurface lens. Nature Communications, 2018, 9(1): 812
CrossRef Pubmed Google scholar
[126]
Yilmaz N, Ozdemir A, Ozer A, Kurt H. Rotationally tunable polarization-insensitive single and multifocal metasurface. Journal of Optics, 2019, 21(4): 045105
CrossRef Google scholar
[127]
Wei Y, Wang Y, Feng X, Xiao S, Wang Z, Hu T, Hu M, Song J, Wegener M, Zhao M, Xia J, Yang Z. Compact optical polarization-insensitive zoom metalens doublet. Advanced Optical Materials, 2020, 8(13): 2000142
CrossRef Google scholar
[128]
Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraon A. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica, 2016, 3(6): 628
CrossRef Google scholar
[129]
Kwon H, Arbabi E, Kamali S M, Faraji-Dana M, Faraon A. Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces. Nature Photonics, 2020, 14(2): 109–114
CrossRef Google scholar
[130]
Huo P, Zhang C, Zhu W, Liu M, Zhang S, Zhang S, Chen L, Lezec H J, Agrawal A, Lu Y, Xu T. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging. Nano Letters, 2020, 20(4): 2791–2798
CrossRef Pubmed Google scholar
[131]
Chen C, Song W, Chen J W, Wang J H, Chen Y H, Xu B, Chen M K, Li H, Fang B, Chen J, Kuo H Y, Wang S, Tsai D P, Zhu S, Li T. Spectral tomographic imaging with aplanatic metalens. Light, Science & Applications, 2019, 8(1): 99
CrossRef Pubmed Google scholar
[132]
Li L, Liu Z, Ren X, Wang S, Su V C, Chen M K, Chu C H, Kuo H Y, Liu B, Zang W, Guo G, Zhang L, Wang Z, Zhu S, Tsai D P. Metalens-array-based high-dimensional and multiphoton quantum source. Science, 2020, 368(6498): 1487–1490
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2020YFC2007102), the National Natural Science Foundation of China (Grant No. 12074444), and Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515011184), Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai).

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(6678 KB)

Accesses

Citations

Detail

Sections
Recommended

/