
Optical trapping using transverse electromagnetic (TEM)-like mode in a coaxial nanowaveguide
Yuanhao LOU, Xiongjie NING, Bei WU, Yuanjie PANG
Front. Optoelectron. ›› 2021, Vol. 14 ›› Issue (4) : 399-406.
Optical trapping using transverse electromagnetic (TEM)-like mode in a coaxial nanowaveguide
Optical traps have emerged as powerful tools for immobilizing and manipulating small particles in three dimensions. Fiber-based optical traps (FOTs) significantly simplify optical setup by creating trapping centers with single or multiple pieces of optical fibers. In addition, they inherit the flexibility and robustness of fiber-optic systems. However, trapping 10-nm-diameter nanoparticles (NPs) using FOTs remains challenging. In this study, we model a coaxial waveguide that works in the optical regime and supports a transverse electromagnetic (TEM)-like mode for NP trapping. Single NPs at waveguide front-end break the symmetry of TEM-like guided mode and lead to high transmission efficiency at far-field, thereby strongly altering light momentum and inducing a large-scale back-action on the particle. We demonstrate, via finite-difference time-domain (FDTD) simulations, that this FOT allows for trapping single 10-nm-diameter NPs at low power.
fiber-based optical trap (FOT) / optical waveguides / optical apertures / metal nanophotonic structures / self-induced back-action / plasmonic optical trapping
Fig.1 (a) Schematic diagram of coaxial nanowaveguide (CNWG) for optical trapping. Light propagates along the z-axis and would be scattered by the trapped nanoparticle (NP). (b)−(d) x-, y-, and z-component of electric field of the transverse electromagnetic (TEM)-like mode, respectively. (e)−(g) x-, y-, and z-component of magnetic field of TEM-like mode, respectively. The value of the z-component is magnified ten times. Large positive and negative values are shown as dark-red and dark-blue regions, respectively, whereas white areas represent regions of zero values of the field |
Fig.2 Transmission intensity of (a) TEM-like and (b) LP modes, respectively, from the waveguide at different wavelengths. Inset declares the polarization direction. The blue solid line represents the transmission intensity when the trapping spot is empty, and the red dashed line represents a particle centered at 14 nm before the waveguide end-face was trapped. The results were normalized to the intensity with a trapped particle |
Fig.5 (a) and (c) Optical force map in y–z plane. (b) and (d) Depth of optical potential well in the y-direction of TEM-like and LP modes, respectively. Scatterplots demonstrate optical force magnitude normalized to the total transmitted power. The dashed black circles in (a) and (c) represents a 10-nm particle |
Fig.6 (a) Schematic diagram of fiber-based CNWG traps. The dielectric fiber has a 1.1-mm-diameter core and 3-mm-diameter cladding. Their RIs were set to 1.56 and 1.46, respectively. (b) and (c) x- and y-component of electric field of TM mode in dielectric fiber. (d) and (e) x- and y-component of electric field in coaxial waveguide |
[1] |
Ashkin A. Acceleration and trapping of particles by radiation pressure. Physical Review Letters, 1970, 24(4): 156–159
CrossRef
Google scholar
|
[2] |
Ghislain L P, Webb W W. Scanning-force microscope based on an optical trap. Optics Letters, 1993, 18(19): 1678–1680
CrossRef
Pubmed
Google scholar
|
[3] |
Neuman K C, Nagy A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods, 2008, 5(6): 491–505
CrossRef
Pubmed
Google scholar
|
[4] |
Xie C, Dinno M A, Li Y Q. Near-infrared Raman spectroscopy of single optically trapped biological cells. Optics Letters, 2002, 27(4): 249–251
CrossRef
Pubmed
Google scholar
|
[5] |
Lang M J, Fordyce P M, Engh A M, Neuman K C, Block S M. Simultaneous, coincident optical trapping and single-molecule fluorescence. Nature Methods, 2004, 1(2): 133–139
CrossRef
Pubmed
Google scholar
|
[6] |
Wheaton S, Gelfand R M, Gordon R. Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution. Nature Photonics, 2015, 9(1): 68–72
CrossRef
Google scholar
|
[7] |
Shi Y, Zhu T, Zhang T, Mazzulla A, Tsai D P, Ding W, Liu A Q, Cipparrone G, Sáenz J J, Qiu C W. Chirality-assisted lateral momentum transfer for bidirectional enantioselective separation. Light, Science & Applications, 2020, 9(1): 62
CrossRef
Pubmed
Google scholar
|
[8] |
Shi Y, Xiong S, Chin L K, Zhang J, Ser W, Wu J, Chen T, Yang Z, Hao Y, Liedberg B, Yap P H, Tsai D P, Qiu C W, Liu A Q. Nanometer-precision linear sorting with synchronized optofluidic dual barriers. Science Advances, 2018, 4(1): eaao0773
|
[9] |
Shi Y Z, Xiong S, Zhang Y, Chin L K, Chen Y, Zhang J B, Zhang T H, Ser W, Larrson A, Lim S H, Wu J H, Chen T N, Yang Z C, Hao Y L, Liedberg B, Yap P H, Wang K, Tsai D P, Qiu C W, Liu A Q. Sculpting nanoparticle dynamics for single-bacteria-level screening and direct binding-efficiency measurement. Nature Communications, 2018, 9(1): 815
CrossRef
Pubmed
Google scholar
|
[10] |
Shi Y, Zhao H, Chin L K, Zhang Y, Yap P H, Ser W, Qiu C W, Liu A Q. Optical potential-well array for high-selectivity, massive trapping and sorting at nanoscale. Nano Letters, 2020, 20(7): 5193–5200
CrossRef
Pubmed
Google scholar
|
[11] |
Pauzauskie P J, Radenovic A, Trepagnier E, Shroff H, Yang P, Liphardt J. Optical trapping and integration of semiconductor nanowire assemblies in water. Nature Materials, 2006, 5(2): 97–101
CrossRef
Pubmed
Google scholar
|
[12] |
Xin H, Li Y, Liu X, Li B. Escherichia coli-based biophotonic waveguides. Nano Letters, 2013, 13(7): 3408–3413
CrossRef
Pubmed
Google scholar
|
[13] |
Ashkin A, Dziedzic J M, Bjorkholm J E, Chu S. Observation of a single-beam gradient force optical trap for dielectric particles. Optics Letters, 1986, 11(5): 288–290
CrossRef
Pubmed
Google scholar
|
[14] |
Čižmár T, Mazilu M, Dholakia K. In situ wavefront correction and its application to micromanipulation. Nature Photonics, 2010, 4(6): 388–394
CrossRef
Google scholar
|
[15] |
Maragò O M, Jones P H, Gucciardi P G, Volpe G, Ferrari A C. Optical trapping and manipulation of nanostructures. Nature Nanotechnology, 2013, 8(11): 807–819
CrossRef
Pubmed
Google scholar
|
[16] |
Constable A, Kim J, Mervis J, Zarinetchi F, Prentiss M. Demonstration of a fiber-optical light-force trap. Optics Letters, 1993, 18(21): 1867–1869
CrossRef
Pubmed
Google scholar
|
[17] |
Lou Y, Wu D, Pang Y. Optical trapping and manipulation using optical fibers. Advanced Fiber Materials, 2019, 1: 83–100
CrossRef
Google scholar
|
[18] |
Taguchi K, Ueno H, Hiramatsu T, Ikeda M. Optical trapping of dielectric particle and biological cell using optical fibre. Electronics Letters, 1997, 33(5): 413–414
CrossRef
Google scholar
|
[19] |
Bykov D S, Xie S, Zeltner R, Machnev A, Wong G K L, Euser T G, Russell P S J. Long-range optical trapping and binding of microparticles in hollow-core photonic crystal fibre. Light, Science & Applications, 2018, 7(1): 22
CrossRef
Pubmed
Google scholar
|
[20] |
Bykov D S, Schmidt O A, Euser T G, Russell P S J. Flying particle sensors in hollow-core photonic crystal fibre. Nature Photonics, 2015, 9(7): 461–465
CrossRef
Google scholar
|
[21] |
Leite I T, Turtaev S, Jiang X, Šiler M, Cuschieri A, Russell P S J, Čižmár T. Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre. Nature Photonics, 2018, 12(1): 33–39
CrossRef
Google scholar
|
[22] |
Kreysing M, Ott D, Schmidberger M J, Otto O, Schürmann M, Martín-Badosa E, Whyte G, Guck J, Martin-Badosa E, Whyte G, Guck J. Dynamic operation of optical fibres beyond the single-mode regime facilitates the orientation of biological cells. Nature Communications, 2014, 5(1): 5481
CrossRef
Pubmed
Google scholar
|
[23] |
Tang X, Zhang Y, Su W, Zhang Y, Liu Z, Yang X, Zhang J, Yang J, Yuan L. Super-low-power optical trapping of a single nanoparticle. Optics Letters, 2019, 44(21): 5165–5168
CrossRef
Pubmed
Google scholar
|
[24] |
Li Y C, Xin H B, Lei H X, Liu L L, Li Y Z, Zhang Y, Li B J. Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet. Light, Science & Applications, 2016, 5(12): e16176
CrossRef
Pubmed
Google scholar
|
[25] |
Li Y, Liu X, Li B. Single-cell biomagnifier for optical nanoscopes and nanotweezers. Light, Science & Applications, 2019, 8(1): 61
CrossRef
Pubmed
Google scholar
|
[26] |
Liberale C, Minzioni P, Bragheri F, De Angelis F, Di Fabrizio E, Cristiani I. Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation. Nature Photonics, 2007, 1(12): 723–727
CrossRef
Google scholar
|
[27] |
Anastasiadi G, Leonard M, Paterson L, Macpherson W N. Fabrication and characterization of machined multi-core fiber tweezers for single cell manipulation. Optics Express, 2018, 26(3): 3557–3567
CrossRef
Pubmed
Google scholar
|
[28] |
Xin H, Li B. Optical orientation and shifting of a single multiwalled carbon nanotube. Light, Science & Applications, 2014, 3(9): e205
CrossRef
Google scholar
|
[29] |
Xin H, Li Y, Xu D, Zhang Y, Chen C H, Li B. Single upconversion nanoparticle-bacterium cotrapping for single-bacterium labeling and analysis. Small, 2017, 13(14): 1603418
CrossRef
Pubmed
Google scholar
|
[30] |
Deng H, Zhang Y, Yuan T, Zhang X, Zhang Y, Liu Z, Yuan L. Fiber-based optical gun for particle shooting. ACS Photonics, 2017, 4(3): 642–648
CrossRef
Google scholar
|
[31] |
Nylk J, Kristensen M V G, Mazilu M, Thayil A K, Mitchell C A, Campbell E C, Powis S J, Gunn-Moore F J, Dholakia K. Development of a graded index microlens based fiber optical trap and its characterization using principal component analysis. Biomedical Optics Express, 2015, 6(4): 1512–1519
CrossRef
Pubmed
Google scholar
|
[32] |
Gong Y, Huang W, Liu Q F, Wu Y, Rao Y, Peng G D, Lang J, Zhang K. Graded-index optical fiber tweezers with long manipulation length. Optics Express, 2014, 22(21): 25267–25276
CrossRef
Pubmed
Google scholar
|
[33] |
Kasztelanic R, Filipkowski A, Anuszkiewicz A, Stafiej P, Stepniewski G, Pysz D, Krzyzak K, Stepien R, Klimczak M, Buczynski R. Integrating free-form nanostructured GRIN microlenses with single-mode fibers for optofluidic systems. Scientific Reports, 2018, 8(1): 5072
CrossRef
Pubmed
Google scholar
|
[34] |
Juan M L, Righini M, Quidant R. Plasmon nano-optical tweezers. Nature Photonics, 2011, 5(6): 349–356
CrossRef
Google scholar
|
[35] |
Yoon S J, Lee J, Han S, Kim C K, Ahn C W, Kim M K, Lee Y H. Non-fluorescent nanoscopic monitoring of a single trapped nanoparticle via nonlinear point sources. Nature Communications, 2018, 9(1): 2218
CrossRef
Pubmed
Google scholar
|
[36] |
Jensen R A, Huang I C, Chen O, Choy J T, Bischof T S, Lončar M, Bawendi M G. Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures. ACS Photonics, 2016, 3(3): 423–427
CrossRef
Google scholar
|
[37] |
Alizadehkhaledi A, Frencken A L, van Veggel F C J M, Gordon R. Isolating nanocrystals with an individual erbium emitter: A route to a stable single-photon source at 1550 nm wavelength. Nano Letters, 2020, 20(2): 1018–1022
CrossRef
Pubmed
Google scholar
|
[38] |
Alizadehkhaledi A, Frencken A L, Dezfouli M K, Hughes S, van Veggel F C, Gordon R. Cascaded plasmon-enhanced emission from a single upconverting nanocrystal. ACS Photonics, 2019, 6(5): 1125–1131
CrossRef
Google scholar
|
[39] |
Pang Y, Gordon R. Optical trapping of a single protein. Nano Letters, 2012, 12(1): 402–406
CrossRef
Google scholar
|
[40] |
Berthelot J, Aćimović S S, Juan M L, Kreuzer M P, Renger J, Quidant R. Three-dimensional manipulation with scanning near-field optical nanotweezers. Nature Nanotechnology, 2014, 9(4): 295–299
CrossRef
Pubmed
Google scholar
|
[41] |
Gelfand R M, Wheaton S, Gordon R. Cleaved fiber optic double nanohole optical tweezers for trapping nanoparticles. Optics Letters, 2014, 39(22): 6415–6417
CrossRef
Pubmed
Google scholar
|
[42] |
Ehtaiba J M, Gordon R. Template-stripped nanoaperture tweezer integrated with optical fiber. Optics Express, 2018, 26(8): 9607–9613
CrossRef
Pubmed
Google scholar
|
[43] |
Hameed N M, El Eter A, Grosjean T, Baida F I. Stand-alone three-dimensional optical tweezers based on fibred bowtie nanoaperture. IEEE Photonics Journal, 2014, 6(4): 1–10
CrossRef
Google scholar
|
[44] |
Zhou J, Chizhik A I, Chu S, Jin D. Single-particle spectroscopy for functional nanomaterials. Nature, 2020, 579(7797): 41–50
CrossRef
Pubmed
Google scholar
|
[45] |
Gordon R. Metal nanoapertures and single emitters. Advanced Optical Materials, 2020, 20(8): 2001110
|
[46] |
Johnson P B, Christy R W. Optical constants of the noble metals. Physical review B, 1972, 6(12): 4370
CrossRef
Google scholar
|
[47] |
Baida F I, Belkhir A, Van Labeke D, Lamrous O. Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes. Physical Review B, 2006, 74(20): 205419
CrossRef
Google scholar
|
[48] |
Saleh A A E, Dionne J A. Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures. Nano Letters, 2012, 12(11): 5581–5586
CrossRef
Pubmed
Google scholar
|
[49] |
Yoo D, Gurunatha K L, Choi H K, Mohr D A, Ertsgaard C T, Gordon R, Oh S H. Low-power optical trapping of nanoparticles and proteins with resonant coaxial nanoaperture using 10 nm gap. Nano Letters, 2018, 18(6): 3637–3642
CrossRef
Pubmed
Google scholar
|
[50] |
Saleh A A E, Sheikhoelislami S, Gastelum S, Dionne J A. Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers. Optics Express, 2016, 24(18): 20593–20603
CrossRef
Pubmed
Google scholar
|
[51] |
Xiao F, Ren Y, Shang W, Zhu W, Han L, Lu H, Mei T, Premaratne M, Zhao J. Sub-10 nm particle trapping enabled by a plasmonic dark mode. Optics Letters, 2018, 43(14): 3413–3416
CrossRef
Pubmed
Google scholar
|
[52] |
Chaumet P C, Rahmani A, Nieto-Vesperinas M. Optical trapping and manipulation of nano-objects with an apertureless probe. Physical Review Letters, 2002, 88(12): 123601
CrossRef
Pubmed
Google scholar
|
[53] |
Hugall J T, Singh A, van Hulst N F. Plasmonic cavity coupling. ACS Photonics, 2018, 5(1): 43–53
CrossRef
Google scholar
|
/
〈 |
|
〉 |