Optical trapping using transverse electromagnetic (TEM)-like mode in a coaxial nanowaveguide
Yuanhao LOU, Xiongjie NING, Bei WU, Yuanjie PANG
Optical trapping using transverse electromagnetic (TEM)-like mode in a coaxial nanowaveguide
Optical traps have emerged as powerful tools for immobilizing and manipulating small particles in three dimensions. Fiber-based optical traps (FOTs) significantly simplify optical setup by creating trapping centers with single or multiple pieces of optical fibers. In addition, they inherit the flexibility and robustness of fiber-optic systems. However, trapping 10-nm-diameter nanoparticles (NPs) using FOTs remains challenging. In this study, we model a coaxial waveguide that works in the optical regime and supports a transverse electromagnetic (TEM)-like mode for NP trapping. Single NPs at waveguide front-end break the symmetry of TEM-like guided mode and lead to high transmission efficiency at far-field, thereby strongly altering light momentum and inducing a large-scale back-action on the particle. We demonstrate, via finite-difference time-domain (FDTD) simulations, that this FOT allows for trapping single 10-nm-diameter NPs at low power.
fiber-based optical trap (FOT) / optical waveguides / optical apertures / metal nanophotonic structures / self-induced back-action / plasmonic optical trapping
[1] |
Ashkin A. Acceleration and trapping of particles by radiation pressure. Physical Review Letters, 1970, 24(4): 156–159
CrossRef
Google scholar
|
[2] |
Ghislain L P, Webb W W. Scanning-force microscope based on an optical trap. Optics Letters, 1993, 18(19): 1678–1680
CrossRef
Pubmed
Google scholar
|
[3] |
Neuman K C, Nagy A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods, 2008, 5(6): 491–505
CrossRef
Pubmed
Google scholar
|
[4] |
Xie C, Dinno M A, Li Y Q. Near-infrared Raman spectroscopy of single optically trapped biological cells. Optics Letters, 2002, 27(4): 249–251
CrossRef
Pubmed
Google scholar
|
[5] |
Lang M J, Fordyce P M, Engh A M, Neuman K C, Block S M. Simultaneous, coincident optical trapping and single-molecule fluorescence. Nature Methods, 2004, 1(2): 133–139
CrossRef
Pubmed
Google scholar
|
[6] |
Wheaton S, Gelfand R M, Gordon R. Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution. Nature Photonics, 2015, 9(1): 68–72
CrossRef
Google scholar
|
[7] |
Shi Y, Zhu T, Zhang T, Mazzulla A, Tsai D P, Ding W, Liu A Q, Cipparrone G, Sáenz J J, Qiu C W. Chirality-assisted lateral momentum transfer for bidirectional enantioselective separation. Light, Science & Applications, 2020, 9(1): 62
CrossRef
Pubmed
Google scholar
|
[8] |
Shi Y, Xiong S, Chin L K, Zhang J, Ser W, Wu J, Chen T, Yang Z, Hao Y, Liedberg B, Yap P H, Tsai D P, Qiu C W, Liu A Q. Nanometer-precision linear sorting with synchronized optofluidic dual barriers. Science Advances, 2018, 4(1): eaao0773
|
[9] |
Shi Y Z, Xiong S, Zhang Y, Chin L K, Chen Y, Zhang J B, Zhang T H, Ser W, Larrson A, Lim S H, Wu J H, Chen T N, Yang Z C, Hao Y L, Liedberg B, Yap P H, Wang K, Tsai D P, Qiu C W, Liu A Q. Sculpting nanoparticle dynamics for single-bacteria-level screening and direct binding-efficiency measurement. Nature Communications, 2018, 9(1): 815
CrossRef
Pubmed
Google scholar
|
[10] |
Shi Y, Zhao H, Chin L K, Zhang Y, Yap P H, Ser W, Qiu C W, Liu A Q. Optical potential-well array for high-selectivity, massive trapping and sorting at nanoscale. Nano Letters, 2020, 20(7): 5193–5200
CrossRef
Pubmed
Google scholar
|
[11] |
Pauzauskie P J, Radenovic A, Trepagnier E, Shroff H, Yang P, Liphardt J. Optical trapping and integration of semiconductor nanowire assemblies in water. Nature Materials, 2006, 5(2): 97–101
CrossRef
Pubmed
Google scholar
|
[12] |
Xin H, Li Y, Liu X, Li B. Escherichia coli-based biophotonic waveguides. Nano Letters, 2013, 13(7): 3408–3413
CrossRef
Pubmed
Google scholar
|
[13] |
Ashkin A, Dziedzic J M, Bjorkholm J E, Chu S. Observation of a single-beam gradient force optical trap for dielectric particles. Optics Letters, 1986, 11(5): 288–290
CrossRef
Pubmed
Google scholar
|
[14] |
Čižmár T, Mazilu M, Dholakia K. In situ wavefront correction and its application to micromanipulation. Nature Photonics, 2010, 4(6): 388–394
CrossRef
Google scholar
|
[15] |
Maragò O M, Jones P H, Gucciardi P G, Volpe G, Ferrari A C. Optical trapping and manipulation of nanostructures. Nature Nanotechnology, 2013, 8(11): 807–819
CrossRef
Pubmed
Google scholar
|
[16] |
Constable A, Kim J, Mervis J, Zarinetchi F, Prentiss M. Demonstration of a fiber-optical light-force trap. Optics Letters, 1993, 18(21): 1867–1869
CrossRef
Pubmed
Google scholar
|
[17] |
Lou Y, Wu D, Pang Y. Optical trapping and manipulation using optical fibers. Advanced Fiber Materials, 2019, 1: 83–100
CrossRef
Google scholar
|
[18] |
Taguchi K, Ueno H, Hiramatsu T, Ikeda M. Optical trapping of dielectric particle and biological cell using optical fibre. Electronics Letters, 1997, 33(5): 413–414
CrossRef
Google scholar
|
[19] |
Bykov D S, Xie S, Zeltner R, Machnev A, Wong G K L, Euser T G, Russell P S J. Long-range optical trapping and binding of microparticles in hollow-core photonic crystal fibre. Light, Science & Applications, 2018, 7(1): 22
CrossRef
Pubmed
Google scholar
|
[20] |
Bykov D S, Schmidt O A, Euser T G, Russell P S J. Flying particle sensors in hollow-core photonic crystal fibre. Nature Photonics, 2015, 9(7): 461–465
CrossRef
Google scholar
|
[21] |
Leite I T, Turtaev S, Jiang X, Šiler M, Cuschieri A, Russell P S J, Čižmár T. Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre. Nature Photonics, 2018, 12(1): 33–39
CrossRef
Google scholar
|
[22] |
Kreysing M, Ott D, Schmidberger M J, Otto O, Schürmann M, Martín-Badosa E, Whyte G, Guck J, Martin-Badosa E, Whyte G, Guck J. Dynamic operation of optical fibres beyond the single-mode regime facilitates the orientation of biological cells. Nature Communications, 2014, 5(1): 5481
CrossRef
Pubmed
Google scholar
|
[23] |
Tang X, Zhang Y, Su W, Zhang Y, Liu Z, Yang X, Zhang J, Yang J, Yuan L. Super-low-power optical trapping of a single nanoparticle. Optics Letters, 2019, 44(21): 5165–5168
CrossRef
Pubmed
Google scholar
|
[24] |
Li Y C, Xin H B, Lei H X, Liu L L, Li Y Z, Zhang Y, Li B J. Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet. Light, Science & Applications, 2016, 5(12): e16176
CrossRef
Pubmed
Google scholar
|
[25] |
Li Y, Liu X, Li B. Single-cell biomagnifier for optical nanoscopes and nanotweezers. Light, Science & Applications, 2019, 8(1): 61
CrossRef
Pubmed
Google scholar
|
[26] |
Liberale C, Minzioni P, Bragheri F, De Angelis F, Di Fabrizio E, Cristiani I. Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation. Nature Photonics, 2007, 1(12): 723–727
CrossRef
Google scholar
|
[27] |
Anastasiadi G, Leonard M, Paterson L, Macpherson W N. Fabrication and characterization of machined multi-core fiber tweezers for single cell manipulation. Optics Express, 2018, 26(3): 3557–3567
CrossRef
Pubmed
Google scholar
|
[28] |
Xin H, Li B. Optical orientation and shifting of a single multiwalled carbon nanotube. Light, Science & Applications, 2014, 3(9): e205
CrossRef
Google scholar
|
[29] |
Xin H, Li Y, Xu D, Zhang Y, Chen C H, Li B. Single upconversion nanoparticle-bacterium cotrapping for single-bacterium labeling and analysis. Small, 2017, 13(14): 1603418
CrossRef
Pubmed
Google scholar
|
[30] |
Deng H, Zhang Y, Yuan T, Zhang X, Zhang Y, Liu Z, Yuan L. Fiber-based optical gun for particle shooting. ACS Photonics, 2017, 4(3): 642–648
CrossRef
Google scholar
|
[31] |
Nylk J, Kristensen M V G, Mazilu M, Thayil A K, Mitchell C A, Campbell E C, Powis S J, Gunn-Moore F J, Dholakia K. Development of a graded index microlens based fiber optical trap and its characterization using principal component analysis. Biomedical Optics Express, 2015, 6(4): 1512–1519
CrossRef
Pubmed
Google scholar
|
[32] |
Gong Y, Huang W, Liu Q F, Wu Y, Rao Y, Peng G D, Lang J, Zhang K. Graded-index optical fiber tweezers with long manipulation length. Optics Express, 2014, 22(21): 25267–25276
CrossRef
Pubmed
Google scholar
|
[33] |
Kasztelanic R, Filipkowski A, Anuszkiewicz A, Stafiej P, Stepniewski G, Pysz D, Krzyzak K, Stepien R, Klimczak M, Buczynski R. Integrating free-form nanostructured GRIN microlenses with single-mode fibers for optofluidic systems. Scientific Reports, 2018, 8(1): 5072
CrossRef
Pubmed
Google scholar
|
[34] |
Juan M L, Righini M, Quidant R. Plasmon nano-optical tweezers. Nature Photonics, 2011, 5(6): 349–356
CrossRef
Google scholar
|
[35] |
Yoon S J, Lee J, Han S, Kim C K, Ahn C W, Kim M K, Lee Y H. Non-fluorescent nanoscopic monitoring of a single trapped nanoparticle via nonlinear point sources. Nature Communications, 2018, 9(1): 2218
CrossRef
Pubmed
Google scholar
|
[36] |
Jensen R A, Huang I C, Chen O, Choy J T, Bischof T S, Lončar M, Bawendi M G. Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures. ACS Photonics, 2016, 3(3): 423–427
CrossRef
Google scholar
|
[37] |
Alizadehkhaledi A, Frencken A L, van Veggel F C J M, Gordon R. Isolating nanocrystals with an individual erbium emitter: A route to a stable single-photon source at 1550 nm wavelength. Nano Letters, 2020, 20(2): 1018–1022
CrossRef
Pubmed
Google scholar
|
[38] |
Alizadehkhaledi A, Frencken A L, Dezfouli M K, Hughes S, van Veggel F C, Gordon R. Cascaded plasmon-enhanced emission from a single upconverting nanocrystal. ACS Photonics, 2019, 6(5): 1125–1131
CrossRef
Google scholar
|
[39] |
Pang Y, Gordon R. Optical trapping of a single protein. Nano Letters, 2012, 12(1): 402–406
CrossRef
Google scholar
|
[40] |
Berthelot J, Aćimović S S, Juan M L, Kreuzer M P, Renger J, Quidant R. Three-dimensional manipulation with scanning near-field optical nanotweezers. Nature Nanotechnology, 2014, 9(4): 295–299
CrossRef
Pubmed
Google scholar
|
[41] |
Gelfand R M, Wheaton S, Gordon R. Cleaved fiber optic double nanohole optical tweezers for trapping nanoparticles. Optics Letters, 2014, 39(22): 6415–6417
CrossRef
Pubmed
Google scholar
|
[42] |
Ehtaiba J M, Gordon R. Template-stripped nanoaperture tweezer integrated with optical fiber. Optics Express, 2018, 26(8): 9607–9613
CrossRef
Pubmed
Google scholar
|
[43] |
Hameed N M, El Eter A, Grosjean T, Baida F I. Stand-alone three-dimensional optical tweezers based on fibred bowtie nanoaperture. IEEE Photonics Journal, 2014, 6(4): 1–10
CrossRef
Google scholar
|
[44] |
Zhou J, Chizhik A I, Chu S, Jin D. Single-particle spectroscopy for functional nanomaterials. Nature, 2020, 579(7797): 41–50
CrossRef
Pubmed
Google scholar
|
[45] |
Gordon R. Metal nanoapertures and single emitters. Advanced Optical Materials, 2020, 20(8): 2001110
|
[46] |
Johnson P B, Christy R W. Optical constants of the noble metals. Physical review B, 1972, 6(12): 4370
CrossRef
Google scholar
|
[47] |
Baida F I, Belkhir A, Van Labeke D, Lamrous O. Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes. Physical Review B, 2006, 74(20): 205419
CrossRef
Google scholar
|
[48] |
Saleh A A E, Dionne J A. Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures. Nano Letters, 2012, 12(11): 5581–5586
CrossRef
Pubmed
Google scholar
|
[49] |
Yoo D, Gurunatha K L, Choi H K, Mohr D A, Ertsgaard C T, Gordon R, Oh S H. Low-power optical trapping of nanoparticles and proteins with resonant coaxial nanoaperture using 10 nm gap. Nano Letters, 2018, 18(6): 3637–3642
CrossRef
Pubmed
Google scholar
|
[50] |
Saleh A A E, Sheikhoelislami S, Gastelum S, Dionne J A. Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers. Optics Express, 2016, 24(18): 20593–20603
CrossRef
Pubmed
Google scholar
|
[51] |
Xiao F, Ren Y, Shang W, Zhu W, Han L, Lu H, Mei T, Premaratne M, Zhao J. Sub-10 nm particle trapping enabled by a plasmonic dark mode. Optics Letters, 2018, 43(14): 3413–3416
CrossRef
Pubmed
Google scholar
|
[52] |
Chaumet P C, Rahmani A, Nieto-Vesperinas M. Optical trapping and manipulation of nano-objects with an apertureless probe. Physical Review Letters, 2002, 88(12): 123601
CrossRef
Pubmed
Google scholar
|
[53] |
Hugall J T, Singh A, van Hulst N F. Plasmonic cavity coupling. ACS Photonics, 2018, 5(1): 43–53
CrossRef
Google scholar
|
/
〈 | 〉 |