A review of dielectric optical metasurfaces for spatial differentiation and edge detection

Lei WAN, Danping PAN, Tianhua FENG, Weiping LIU, Alexander A. POTAPOV

PDF(5403 KB)
PDF(5403 KB)
Front. Optoelectron. ›› 2021, Vol. 14 ›› Issue (2) : 187-200. DOI: 10.1007/s12200-021-1124-5
REVIEW ARTICLE
REVIEW ARTICLE

A review of dielectric optical metasurfaces for spatial differentiation and edge detection

Author information +
History +

Abstract

Dielectric metasurfaces-based planar optical spatial differentiator and edge detection have recently been proposed to play an important role in the parallel and fast image processing technology. With the development of dielectric metasurfaces of different geometries and resonance mechanisms, diverse on-chip spatial differentiators have been proposed by tailoring the dispersion characteristics of subwavelength structures. This review focuses on the basic principles and characteristic parameters of dielectric metasurfaces as first- and second-order spatial differentiators realized via the Green’s function approach. The spatial bandwidth and polarization dependence are emphasized as key properties by comparing the optical transfer functions of metasurfaces for different incident wavevectors and polarizations. To present the operational capabilities of a two-dimensional spatial differentiator in image information acquisition, edge detection is described to illustrate the practicability of the device. As an application example, experimental demonstrations of edge detection for different biological cells and a flower mold are discussed, in which a spatial differentiator and objective lens or camera are integrated in three optical pathway configurations. The realization of spatial differentiators and edge detection with dielectric metasurfaces provides new opportunities for ultrafast information identification in biological imaging and machine vision.

Graphical abstract

Keywords

dielectric metasurfaces / spatial differentiator / edge detection / optical transfer function

Cite this article

Download citation ▾
Lei WAN, Danping PAN, Tianhua FENG, Weiping LIU, Alexander A. POTAPOV. A review of dielectric optical metasurfaces for spatial differentiation and edge detection. Front. Optoelectron., 2021, 14(2): 187‒200 https://doi.org/10.1007/s12200-021-1124-5

References

[1]
Gudmundsson M, El-Kwae E A, Kabuka M R. Edge detection in medical images using a genetic algorithm. IEEE Transactions on Medical Imaging, 1998, 17(3): 469–474
CrossRef Pubmed Google scholar
[2]
Chen J, Li J, Pan D, Zhu Q, Mao Z. Edge-guided multiscale segmentation of satellite multispectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(11): 4513–4520
CrossRef Google scholar
[3]
Hoang T M, Nam S H, Park K R. Enhanced detection and recognition of road markings based on adaptive region of interest and deep learning. IEEE Access: Practical Innovations, Open Solutions, 2019, 7: 109817–109832
CrossRef Google scholar
[4]
Solli D R, Jalali B. Analog optical computing. Nature Photonics, 2015, 9(11): 704–706
CrossRef Google scholar
[5]
Goodman J W. Introduction to Fourier Optics. Englewood: Roberts & Company Publishers, 2005
[6]
Silva A, Monticone F, Castaldi G, Galdi V, Alù A, Engheta N. Performing mathematical operations with metamaterials. Science, 2014, 343(6167): 160–163
CrossRef Pubmed Google scholar
[7]
Pendry J B, Holden A J, Robbins D J, Stewart J W. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075–2084
CrossRef Google scholar
[8]
Smith D R, Vier D C, Koschny T, Soukoulis C M. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Physical Review E, 2005, 71(3): 036617
CrossRef Pubmed Google scholar
[9]
Zhang C, Divitt S, Fan Q, Zhu W, Agrawal A, Lu Y, Xu T, Lezec H J. Low-loss metasurface optics down to the deep ultraviolet region. Light, Science & Applications, 2020, 9(1): 55
CrossRef Pubmed Google scholar
[10]
Divitt S, Zhu W, Zhang C, Lezec H J, Agrawal A. Ultrafast optical pulse shaping using dielectric metasurfaces. Science, 2019, 364(6443): 890–894
CrossRef Pubmed Google scholar
[11]
Zhang C, Pfeiffer C, Jang T, Ray V, Junda M, Uprety P, Podraza N, Grbic A, Guo L J. Breaking Malus’ law: highly efficient, broadband, and angular robust asymmetric light transmitting metasurface. Laser & Photonics Reviews, 2016, 10(5): 791–798
CrossRef Google scholar
[12]
Yu N, Capasso F. Flat optics with designer metasurfaces. Nature Materials, 2014, 13(2): 139–150
CrossRef Pubmed Google scholar
[13]
Hsiao H H, Chu C H, Tsai D P. Fundamentals and applications of metasurfaces. Small Methods, 2017, 1(4): 1600064
CrossRef Google scholar
[14]
Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces. Science, 2013, 339(6125): 1232009
CrossRef Pubmed Google scholar
[15]
Kamali S M, Arbabi E, Arbabi A, Faraon A. A review of dielectric optical metasurfaces for wavefront control. Nanophotonics, 2018, 7(6): 1041–1068
CrossRef Google scholar
[16]
Zhang L, Mei S, Huang K, Qiu C W. Advances in full control of electromagnetic waves with metasurfaces. Advanced Optical Materials, 2016, 4(6): 818–833
CrossRef Google scholar
[17]
Luo X G. Subwavelength optical engineering with metasurface waves. Advanced Optical Materials, 2018, 6(7): 1701201
CrossRef Google scholar
[18]
Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nature Nanotechnology, 2015, 10(11): 937–943
CrossRef Pubmed Google scholar
[19]
Lin D, Fan P, Hasman E, Brongersma M L. Dielectric gradient metasurface optical elements. Science, 2014, 345(6194): 298–302
CrossRef Pubmed Google scholar
[20]
Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science, 2016, 352(6290): 1190–1194
CrossRef Pubmed Google scholar
[21]
Chen W T, Zhu A Y, Sanjeev V, Khorasaninejad M, Shi Z, Lee E, Capasso F. A broadband achromatic metalens for focusing and imaging in the visible. Nature Nanotechnology, 2018, 13(3): 220–226
CrossRef Pubmed Google scholar
[22]
Deng Y, Wang X, Gong Z, Dong K, Lou S, Pégard N, Tom K B, Yang F, You Z, Waller L, Yao J. All-silicon broadband ultraviolet metasurfaces. Advanced Materials, 2018, 30(38): 1802632
CrossRef Pubmed Google scholar
[23]
Henstridge M, Pfeiffer C, Wang D, Boltasseva A, Shalaev V M, Grbic A, Merlin R. Accelerating light with metasurfaces. Optica, 2018, 5(6): 678–681
CrossRef Google scholar
[24]
Wang L, Kruk S, Tang H, Li T, Kravchenko I, Neshev D N, Kivshar Y S. Grayscale transparent metasurface holograms. Optica, 2016, 3(12): 1504–1505
CrossRef Google scholar
[25]
Wang B, Dong F, Yang D, Song Z, Xu L, Chu W, Gong Q, Li Y. Polarization-controlled color-tunable holograms with dielectric metasurfaces. Optica, 2017, 4(11): 1368–1371
CrossRef Google scholar
[26]
Huang L, Zhang S, Zentgraf T. Metasurface holography: from fundamentals to applications. Nanophotonics, 2018, 7(6): 1169–1190
CrossRef Google scholar
[27]
Balthasar Mueller J P, Rubin N A, Devlin R C, Groever B, Capasso F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Physical Review Letters, 2017, 118(11): 113901
CrossRef Pubmed Google scholar
[28]
Wang K, Titchener J G, Kruk S S, Xu L, Chung H P, Parry M, Kravchenko I I, Chen Y H, Solntsev A S, Kivshar Y S, Neshev D N, Sukhorukov A A. Quantum metasurface for multiphoton interference and state reconstruction. Science, 2018, 361(6407): 1104–1108
CrossRef Pubmed Google scholar
[29]
Phan T, Sell D, Wang E W, Doshay S, Edee K, Yang J, Fan J A. High-efficiency, large-area, topology-optimized metasurfaces. Light, Science & Applications, 2019, 8(1): 48
CrossRef Pubmed Google scholar
[30]
Decker M, Staude I, Falkner M, Dominguez J, Neshev D N, Brener I, Pertsch T, Kivshar Y S. High-efficiency dielectric Huygens’ surfaces. Advanced Optical Materials, 2015, 3(6): 813–820
CrossRef Google scholar
[31]
Pfeiffer C, Grbic A. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Physical Review Letters, 2013, 110(19): 197401
CrossRef Pubmed Google scholar
[32]
Kamali S M, Arbabi E, Arbabi A, Horie Y, Faraji-Dana M, Faraon A. Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles. Physical Review X, 2017, 7(4): 041056
CrossRef Google scholar
[33]
Pors A, Nielsen M G, Bozhevolnyi S I. Analog computing using reflective plasmonic metasurfaces. Nano Letters, 2015, 15(1): 791–797
CrossRef Pubmed Google scholar
[34]
Chen H, An D, Li Z, Zhao X. Performing differential operation with a silver dendritic metasurface at visible wavelengths. Optics Express, 2017, 25(22): 26417–26426
CrossRef Pubmed Google scholar
[35]
Wu W, Jiang W, Yang J, Gong S, Ma Y. Multilayered analog optical differentiating device: performance analysis on structural parameters. Optics Letters, 2017, 42(24): 5270–5273
CrossRef Pubmed Google scholar
[36]
Kwon H, Sounas D, Cordaro A, Polman A, Alù A. Nonlocal metasurfaces for optical signal processing. Physical Review Letters, 2018, 121(17): 173004
CrossRef Pubmed Google scholar
[37]
Zhang W, Qu C, Zhang X. Solving constant-coefficient differential equations with dielectric metamaterials. Journal of Optics, 2016, 18(7): 075102
CrossRef Google scholar
[38]
Abdollahramezani S, Chizari A, Dorche A E, Jamali M V, Salehi J A. Dielectric metasurfaces solve differential and integro-differential equations. Optics Letters, 2017, 42(7): 1197–1200
CrossRef Pubmed Google scholar
[39]
Zhu T, Zhou Y, Lou Y, Ye H, Qiu M, Ruan Z, Fan S. Plasmonic computing of spatial differentiation. Nature Communications, 2017, 8(1): 15391
CrossRef Pubmed Google scholar
[40]
Zhou J, Liu X, Fu G, Liu G, Tang P, Yuan W, Zhan X, Liu Z. High-performance plasmonic oblique sensors for the detection of ions. Nanotechnology, 2020, 31(28): 285501
CrossRef Pubmed Google scholar
[41]
Shi L, Shang J, Liu Z, Li Y, Fu G, Liu X, Pan P, Luo H, Liu G. Ultra-narrow multi-band polarization-insensitive plasmonic perfect absorber for sensing. Nanotechnology, 2020, 31(46): 465501
CrossRef Pubmed Google scholar
[42]
Liu Z, Liu G, Fu G, Liu X, Huang Z, Gu G. All-metal meta-surfaces for narrowband light absorption and high performance sensing. Journal of Physics D, Applied Physics, 2016, 49(44): 445104
CrossRef Google scholar
[43]
Liu Z, Fu G, Liu X, Liu Y, Tang L, Liu Z, Liu G. High-quality multispectral bio-sensing with asymmetric all-dielectric meta-materials. Journal of Physics D, Applied Physics, 2017, 50(16): 165106
CrossRef Google scholar
[44]
Liu Z, Liu G, Liu X, Huang S, Wang Y, Pan P, Liu M. Achieving an ultra-narrow multiband light absorption meta-surface via coupling with an optical cavity. Nanotechnology, 2015, 26(23): 235702
CrossRef Pubmed Google scholar
[45]
Zhou J, Qian H, Chen C F, Zhao J, Li G, Wu Q, Luo H, Wen S, Liu Z. Optical edge detection based on high-efficiency dielectric metasurface. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(23): 11137–11140
CrossRef Pubmed Google scholar
[46]
Zhou Y, Wu W, Chen R, Chen W, Chen R, Ma Y. Analog optical spatial differentiators based on dielectric metasurfaces. Advanced Optical Materials, 2020, 8(4): 1901523
CrossRef Google scholar
[47]
Zhou Y, Zheng H, Kravchenko I I, Valentine J. Flat optics for image differentiation. Nature Photonics, 2020, 14(5): 316–323
CrossRef Google scholar
[48]
Wan L, Pan D, Yang S, Zhang W, Potapov A A, Wu X, Liu W, Feng T, Li Z. Optical analog computing of spatial differentiation and edge detection with dielectric metasurfaces. Optics Letters, 2020, 45(7): 2070–2073
CrossRef Pubmed Google scholar
[49]
Soukoulis C M, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photonics, 2011, 5(9): 523–530
CrossRef Google scholar
[50]
Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334(6054): 333–337
CrossRef Pubmed Google scholar
[51]
Farmahini-Farahani M, Cheng J, Mosallaei H. Metasurfaces nanoantennas for light processing. Journal of the Optical Society of America B, Optical Physics, 2013, 30(9): 2365–2370
CrossRef Google scholar
[52]
Chizari A, Abdollahramezani S, Jamali M V, Salehi J A. Analog optical computing based on a dielectric meta-reflect array. Optics Letters, 2016, 41(15): 3451–3454
CrossRef Pubmed Google scholar
[53]
Guo C, Xiao M, Minkov M, Shi Y, Fan S. Photonic crystal slab Laplace operator for image differentiation. Optica, 2018, 5(3): 251–256
CrossRef Google scholar
[54]
Fan S, Joannopoulos J D. Analysis of guided resonances in photonic crystal slabs. Physical Review B, 2002, 65(23): 235112
CrossRef Google scholar
[55]
Limonov M F, Rybin M V, Poddubny A N, Kivshar Y S. Fano resonances in photonics. Nature Photonics, 2017, 11(9): 543–554
CrossRef Google scholar
[56]
Kuznetsov A I, Miroshnichenko A E, Brongersma M L, Kivshar Y S, Luk’yanchuk B. Optically resonant dielectric nanostructures. Science, 2016, 354(6314): aag2472
CrossRef Pubmed Google scholar
[57]
He S, Zhou J, Chen S, Shu W, Luo H, Wen S. Wavelength-independent optical fully differential operation based on the spin-orbit interaction of light. APL Photonics, 2020, 5(3): 036105
CrossRef Google scholar
[58]
Guo C, Xiao M, Minkov M, Shi Y, Fan S. Isotropic wavevector domain image filters by a photonic crystal slab device. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2018, 35(10): 1685–1691
CrossRef Pubmed Google scholar
[59]
Saba A, Tavakol M R, Karimi-Khoozani P, Khavasi A. Two-dimensional edge detection by guided mode resonant metasurface. IEEE Photonics Technology Letters, 2018, 30(9): 853–856
CrossRef Google scholar
[60]
Cordaro A, Kwon H, Sounas D, Koenderink A F, Alù A, Polman A. High-index dielectric matesurfaces performing mathematical operations. Nano Letters, 2019, 19(12): 8418–8423
CrossRef Pubmed Google scholar
[61]
Abdollahramezani S, Hemmatyar O, Adibi A. Meta-optics for spatial optical analog computing. Nanophotonics, 2020, 9(13): 4075–4095
CrossRef Google scholar
[62]
Kwon H, Cordaro A, Sounas D, Polman A, Alù A. Dual-polarization analog 2D image processing with nonlocal metasurfaces. ACS Photonics, 2020, 7(7): 1799–1805
CrossRef Google scholar
[63]
Roberts A, Gómez D E, Davis T J. Optical image processing with metasurface dark modes. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2018, 35(9): 1575–1584
CrossRef Pubmed Google scholar
[64]
Davis T J, Eftekhari F, Gómez D E, Roberts A. Metasurfaces with asymmetric optical transfer functions for optical signal processing. Physical Review Letters, 2019, 123(1): 013901
CrossRef Pubmed Google scholar
[65]
Zhu T, Lou Y, Zhou Y, Zhang J, Huang J, Li Y, Luo H, Wen S, Zhu S, Gong Q, Qiu M, Ruan Z. Generalized spatial differentiation from the spin hall effect of light and its application in image processing of edge detection. Physical Review Applied, 2019, 11(3): 034043
CrossRef Google scholar
[66]
He S, Zhou J, Chen S, Shu W, Luo H, Wen S. Spatial differential operation and edge detection based on the geometric spin Hall effect of light. Optics Letters, 2020, 45(4): 877–880
CrossRef Pubmed Google scholar
[67]
Wang H, Guo C, Zhao Z, Fan S. Compact incoherent image differentiation with nanophotonic structures. ACS Photonics, 2020, 7(2): 338–343
CrossRef Google scholar
[68]
Zhou J, Qian H, Zhao J, Tang M, Wu Q, Lei M, Luo H, Wen S, Chen S, Liu Z. Two-dimensional optical spatial differentiation and high-contrast imaging. National Science Review, 2020, doi:10.1093/nsr/nwaa176
CrossRef Google scholar
[69]
Karimi P, Khavasi A, Mousavi Khaleghi S S. Fundamental limit for gain and resolution in anglog optical edge detection. Optics Express, 2020, 28(2): 898–911
CrossRef Pubmed Google scholar
[70]
Huo P, Zhang C, Zhu W, Liu M, Zhang S, Zhang S, Chen L, Lezec H J, Agrawal A, Lu Y, Xu T. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging. Nano Letters, 2020, 20(4): 2791–2798
CrossRef Pubmed Google scholar
[71]
Zou X, Zheng G, Yuan Q, Zang W, Chen R, Li T, Li L, Wang S, Wang Z, Zhu S. Imaging based on metalens. PhotoniX, 2020, 1(2): 4540

Acknowledgments

This work was supported in part by the National Key R&D Program of China (No. 2019YFB1803904), in part by the National Natural Science Foundation of China (Grant Nos. 61805104, 11704156, 61935013, 61875076, and 61865014), in part by the Open Project of Wuhan National Laboratory for Optoelectronics, China (No. 2018WNLOKF015).

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(5403 KB)

Accesses

Citations

Detail

Sections
Recommended

/