Nanoimprint lithography for high-throughput fabrication of metasurfaces

Dong Kyo OH, Taejun LEE, Byoungsu KO, Trevon BADLOE, Jong G. OK, Junsuk RHO

PDF(7452 KB)
PDF(7452 KB)
Front. Optoelectron. ›› 2021, Vol. 14 ›› Issue (2) : 229-251. DOI: 10.1007/s12200-021-1121-8
REVIEW ARTICLE
REVIEW ARTICLE

Nanoimprint lithography for high-throughput fabrication of metasurfaces

Author information +
History +

Abstract

Metasurfaces are composed of periodic subwavelength nanostructures and exhibit optical properties that are not found in nature. They have been widely investigated for optical applications such as holograms, wavefront shaping, and structural color printing, however, electron-beam lithography is not suitable to produce large-area metasurfaces because of the high fabrication cost and low productivity. Although alternative optical technologies, such as holographic lithography and plasmonic lithography, can overcome these drawbacks, such methods are still constrained by the optical diffraction limit. To break through this fundamental problem, mechanical nanopatterning processes have been actively studied in many fields, with nanoimprint lithography (NIL) coming to the forefront. Since NIL replicates the nanopattern of the mold regardless of the diffraction limit, NIL can achieve sufficiently high productivity and patterning resolution, giving rise to an explosive development in the fabrication of metasurfaces. In this review, we focus on various NIL technologies for the manufacturing of metasurfaces. First, we briefly describe conventional NIL and then present various NIL methods for the scalable fabrication of metasurfaces. We also discuss recent applications of NIL in the realization of metasurfaces. Finally, we conclude with an outlook on each method and suggest perspectives for future research on the high-throughput fabrication of active metasurfaces.

Graphical abstract

Keywords

nanoimprint / scalable fabrication / large-area metasurface / tailored nanostructure / hierarchical nano-structures

Cite this article

Download citation ▾
Dong Kyo OH, Taejun LEE, Byoungsu KO, Trevon BADLOE, Jong G. OK, Junsuk RHO. Nanoimprint lithography for high-throughput fabrication of metasurfaces. Front. Optoelectron., 2021, 14(2): 229‒251 https://doi.org/10.1007/s12200-021-1121-8

References

[1]
Lemoult F, Kaina N, Fink M, Lerosey G. Wave propagation control at the deep subwavelength scale in metamaterials. Nature Physics, 2013, 9(11): 55–60
CrossRef Google scholar
[2]
Lee C W, Choi H J, Jeong H. Tunable metasurfaces for visible and SWIR applications. Nano Convergence, 2020, 7(1): 3
CrossRef Pubmed Google scholar
[3]
Chen Y, Ai B, Wong Z J. Soft optical metamaterials. Nano Convergence, 2020, 7(1): 18
CrossRef Pubmed Google scholar
[4]
Lawrence M, Barton D R 3rd, Dixon J, Song J H, van de Groep J, Brongersma M L, Dionne J A. High quality factor phase gradient metasurfaces. Nature Nanotechnology, 2020, 15(11): 956–961
CrossRef Pubmed Google scholar
[5]
Yoon G, Lee D, Nam K T, Rho J. Geometric metasurface enabling polarization independent beam splitting. Scientific Reports, 2018, 8(1): 9468
CrossRef Pubmed Google scholar
[6]
Wu P C, Pala R A, Kafaie Shirmanesh G, Cheng W H, Sokhoyan R, Grajower M, Alam M Z, Lee D, Atwater H A. Dynamic beam steering with all-dielectric electro-optic III-V multiple-quantum-well metasurfaces. Nature Communications, 2019, 10(1): 3654
CrossRef Pubmed Google scholar
[7]
Wong Z J, Wang Y, O’Brien K, Rho J, Yin X B, Zhang S, Fang N, Yen T J, Zhang X. Optical and acoustic metamaterials: Superlens, negative refractive index and invisibility cloak. Journal of Optics, 2017, 19(8): 084007
CrossRef Google scholar
[8]
Bang S, So S, Rho J. Realization of broadband negative refraction in visible range using vertically stacked hyperbolic metamaterials. Scientific Reports, 2019, 9(1): 14093
CrossRef Pubmed Google scholar
[9]
Yu N, Capasso F. Flat optics with designer metasurfaces. Nature Materials, 2014, 13(2): 139–150
CrossRef Pubmed Google scholar
[10]
Lee D, Yang Y, Yoon G, Kim M, Rho J. Resolution enhancement of fluorescence microscopy using encoded patterns from all-dielectric metasurfaces. Applied Physics Letters, 2019, 115(10): 101102
CrossRef Google scholar
[11]
Lee D, Kim M, Kim J, Hong H, Badloe T, Kim D S, Rho J. All-dielectric metasurface imaging platform applicable to laser scanning microscopy with enhanced axial resolution and wavelength selection. Optical Materials Express, 2019, 9(8): 3248–3259
CrossRef Google scholar
[12]
Kim M, Rho J. Metamaterials and imaging. Nano Convergence, 2015, 2(1): 22
CrossRef Pubmed Google scholar
[13]
Byun M, Lee D, Kim M, Kim Y, Kim K, Ok J G, Rho J, Lee H. Demonstration of nanoimprinted hyperlens array for high-throughput sub-diffraction imaging. Scientific Reports, 2017, 7(1): 46314
CrossRef Pubmed Google scholar
[14]
Lee D, Kim Y D, Kim M, So S, Choi H J, Mun J, Nguyen D M, Badloe T, Ok J G, Kim K, Lee H, Rho J. Realization of wafer-scale hyperlens device for sub-diffractional biomolecular imaging. ACS Photonics, 2018, 5(7): 2549–2554
CrossRef Google scholar
[15]
Jang J, Badloe T, Yang Y, Lee T, Mun J, Rho J. Spectral modulation through the hybridization of Mie-scatterers and quasi-guided mode resonances: realizing full and gradients of structural color. ACS Nano, 2020, 14(11): 15317–15326
CrossRef Pubmed Google scholar
[16]
Mudachathi R, Tanaka T. Up scalable full colour plasmonic pixels with controllable hue, brightness and saturation. Scientific Reports, 2017, 7(1): 1199
CrossRef Pubmed Google scholar
[17]
Lee Y, Park M K, Kim S, Shin J H, Moon C, Hwang J Y, Choi J C, Park H, Kim H R, Jang J E. Electrical broad tuning of plasmonic color filter employing an asymmetric-lattice nanohole array of metasurface controlled by polarization rotator. ACS Photonics, 2017, 4(8): 1954–1966
CrossRef Google scholar
[18]
Lee D, Gwak J, Badloe T, Palomba S, Rho J. Metasurfaces-based imaging and applications: from miniaturized optical components to functional imaging platforms. Nanoscale Advances, 2020, 2(2): 605–625
CrossRef Google scholar
[19]
Lee T, Jang J, Jeong H, Rho J. Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications. Nano Convergence, 2018, 5(1): 1
CrossRef Pubmed Google scholar
[20]
Kim M, Kim I, Jang J, Lee D, Nam K T, Rho J. Active color control in a metasurface by polarization rotation. Applied Sciences (Basel, Switzerland), 2018, 8(6): 982
CrossRef Google scholar
[21]
Yoon G, Lee D, Nam K T, Rho J. “Crypto-display” in dual-mode metasurfaces by simultaneous control of phase and spectral responses. ACS Nano, 2018, 12(7): 6421–6428
CrossRef Pubmed Google scholar
[22]
Jang J, Kang K, Raeis-Hosseini N, Ismukhanova A, Jeong H, Jung C, Kim B, Lee J Y, Park I, Rho J. Self-powered humidity sensor using chitosan-based plasmonic metal-hydrogel-metal filters. Advanced Optical Materials, 2020, 8(9): 1901932
CrossRef Google scholar
[23]
Aoni R A, Rahmani M, Xu L, Zangeneh Kamali K, Komar A, Yan J, Neshev D, Miroshnichenko A E. High-efficiency visible light manipulation using dielectric metasurfaces. Scientific Reports, 2019, 9(1): 6510
CrossRef Pubmed Google scholar
[24]
Jang J, Badloe T, Sim Y C, Yang Y, Mun J, Lee T, Cho Y H, Rho J. Full and gradient structural colouration by lattice amplified gallium nitride Mie-resonators. Nanoscale, 2020, 12(41): 21392–21400
CrossRef Pubmed Google scholar
[25]
Kim I, Ansari M A, Mehmood M Q, Kim W S, Jang J, Zubair M, Kim Y K, Rho J. Stimuli-responsive dynamic metaholographic displays with designer liquid crystal modulators. Advanced Materials, 2020, 32(50): e2004664
CrossRef Pubmed Google scholar
[26]
Kim I, Yoon G, Jang J, Genevet P, Nam K T, Rho J. Outfitting next generation displays with optical metasurfaces. ACS Photonics, 2018, 5(10): 3876–3895
CrossRef Google scholar
[27]
Li Z, Kim I, Zhang L, Mehmood M Q, Anwar M S, Saleem M, Lee D, Nam K T, Zhang S, Luk’yanchuk B, Wang Y, Zheng G, Rho J, Qiu C W. Dielectric meta-holograms enabled with dual magnetic resonances in visible light. ACS Nano, 2017, 11(9): 9382–9389
CrossRef Pubmed Google scholar
[28]
Lee G Y, Yoon G, Lee S Y, Yun H, Cho J, Lee K, Kim H, Rho J, Lee B. Complete amplitude and phase control of light using broadband holographic metasurfaces. Nanoscale, 2018, 10(9): 4237–4245
CrossRef Pubmed Google scholar
[29]
Ansari M A, Kim I, Lee D, Waseem M H, Zubair M, Mahmood N, Badloe T, Yerci S, Tauqeer T, Mehmood M Q, Rho J. A spin-encoded all-dielectric metahologram for visible light. Laser & Photonics Reviews, 2019, 13(5): 1900065
CrossRef Google scholar
[30]
Yoon G, Kim J, Mun J, Lee D, Nam K T, Rho J. Wavelength-decoupled geometric metasurfaces by arbitrary dispersion control. Communications on Physics, 2019, 2(1): 129
CrossRef Google scholar
[31]
Ansari M A, Kim I, Rukhlenko I D, Zubair M, Yerci S, Tauqeer T, Mehmood M Q, Rho J. Engineering spin and antiferromagnetic resonances to realize an efficient direction-multiplexed visible meta-hologram. Nanoscale Horizons, 2020, 5(1): 57–64
CrossRef Google scholar
[32]
Yoon G, Lee D, Nam K T, Rho J. Pragmatic metasurface hologram at visible wavelength: the balance between diffraction efficiency and fabrication compatibility. ACS Photonics, 2018, 5(5): 1643–1647
CrossRef Google scholar
[33]
Ren H, Fang X, Jang J, Bürger J, Rho J, Maier S A. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nature Nanotechnology, 2020, 15(11): 948–955
CrossRef Pubmed Google scholar
[34]
Rana A S, Mehmood M Q, Jeong H, Kim I, Rho J. Tungsten-based ultrathin absorber for visible regime. Scientific Reports, 2018, 8(1): 2443
CrossRef Pubmed Google scholar
[35]
Barho F B, Gonzalez-Posada F, Cerutti L, Taliercio T. Heavily doped semiconductor metamaterials for mid-infrared multispectral perfect absorption and thermal emission. Advanced Optical Materials, 2020, 8(6): 1901502
CrossRef Google scholar
[36]
Yoon G, So S, Kim M, Mun J, Ma R, Rho J. Electrically tunable metasurface perfect absorber for infrared frequencies. Nano Convergence, 2017, 4(1): 36
CrossRef Pubmed Google scholar
[37]
Nguyen D M, Lee D, Rho J. Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths. Scientific Reports, 2017, 7(1): 2611
CrossRef Pubmed Google scholar
[38]
Badloe T, Mun J, Rho J. Metasurfaces-based absorption and reflection control: perfect absorbers and reflectors. Journal of Nanomaterials, 2017, 2017(1): 2361042
CrossRef Google scholar
[39]
Badloe T, Kim I, Rho J. Moth-eye shaped on-demand broadband and switchable perfect absorbers based on vanadium dioxide. Scientific Reports, 2020, 10(1): 4522
CrossRef Pubmed Google scholar
[40]
Badloe T, Kim I, Rho J. Biomimetic ultra-broadband perfect absorbers optimised with reinforcement learning. Physical Chemistry Chemical Physics, 2020, 22(4): 2337–2342
CrossRef Pubmed Google scholar
[41]
Kim I, So S, Rana A S, Mehmood M Q, Rho J. Thermally robust ring-shaped chromium perfect absorber of visible light. Nanophotonics, 2018, 7(11): 1827–1833
CrossRef Google scholar
[42]
Sajedian I, Badloe T, Lee H, Rho J. Deep Q-network to produce polarization-independent perfect solar absorbers: a statistical report. Nano Convergence, 2020, 7(1): 26
CrossRef Pubmed Google scholar
[43]
Yoon G, Jang J, Mun J, Nam K T, Rho J. Metasurface zone plate for light manipulation in vectorial regime. Communications on Physics, 2019, 2(1): 156
CrossRef Google scholar
[44]
Yin X, Ye Z, Rho J, Wang Y, Zhang X. Photonic spin Hall effect at metasurfaces. Science, 2013, 339(6126): 1405–1407
CrossRef Pubmed Google scholar
[45]
Wang Y H, Jin R C, Li J Q, Zhong F, Liu H, Kim I, Jo Y, Rho J, Dong Z G. Photonic spin hall effect by the spin-orbit interaction in a metasurface with elliptical nano-structures. Applied Physics Letters, 2017, 110(10): 101908
CrossRef Google scholar
[46]
Wang Y H, Kim I, Jin R C, Jeong H, Li J Q, Dong Z G, Rho J. Experimental verification of asymmetric transmission in continuous omega-shaped metamaterials. RSC Advances, 2018, 8(67): 38556–38561
CrossRef Google scholar
[47]
Hong J, Kim S J, Kim I, Yun H, Mun S E, Rho J, Lee B. Plasmonic metasurface cavity for simultaneous enhancement of optical electric and magnetic fields in deep subwavelength volume. Optics Express, 2018, 26(10): 13340–13348
CrossRef Pubmed Google scholar
[48]
Kim I, So S, Mun J, Lee K H, Lee J H, Lee T, Rho J. Optical characterizations and thermal analyses of HfO2/SiO2 multilayered diffraction gratings for high-power continuous wave laser. Journal of Physics: Photonics, 2020, 2(2): 025004
CrossRef Google scholar
[49]
Mahmood N, Kim I, Mehmood M Q, Jeong H, Akbar A, Lee D, Saleem M, Zubair M, Anwar M S, Tahir F A, Rho J. Polarisation insensitive multifunctional metasurfaces based on all-dielectric nanowaveguides. Nanoscale, 2018, 10(38): 18323–18330
CrossRef Pubmed Google scholar
[50]
Mahmood N, Jeong H, Kim I, Mehmood M Q, Zubair M, Akbar A, Saleem M, Anwar M S, Tahir F A, Rho J. Twisted non-diffracting beams through all dielectric meta-axicons. Nanoscale, 2019, 11(43): 20571–20578
CrossRef Pubmed Google scholar
[51]
Li Z, Dai Q, Mehmood M Q, Hu G, Yanchuk B L, Tao J, Hao C, Kim I, Jeong H, Zheng G, Yu S, Alù A, Rho J, Qiu C W. Full-space cloud of random points with a scrambling metasurface. Light, Science & Applications, 2018, 7(1): 63
CrossRef Pubmed Google scholar
[52]
Yoon G, Lee D, Rho J. Demonstration of equal-intensity beam generation by dielectric metasurfaces. Journal of Visualized Experiments, 2019, 148(148): e59066
CrossRef Pubmed Google scholar
[53]
Lee H E, Ahn H Y, Mun J, Lee Y Y, Kim M, Cho N H, Chang K, Kim W S, Rho J, Nam K T. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature, 2018, 556(7701): 360–365
CrossRef Pubmed Google scholar
[54]
Raeis-Hosseini N, Rho J. Dual-functional nanoscale devices using phase-change materials: a reconfigurable perfect absorber with nonvolatile resistance-change memory characteristics. Applied Sciences (Basel, Switzerland), 2019, 9(3): 564
CrossRef Google scholar
[55]
Raeis-Hosseini N, Rho J. Metasurfaces based on phase-change material as a reconfigurable platform for multifunctional devices. Materials (Basel), 2017, 10(9): 1046
CrossRef Pubmed Google scholar
[56]
Yoon G, Kim I, So S, Mun J, Kim M, Rho J. Fabrication of three-dimensional suspended, interlayered and hierarchical nanostructures by accuracy-improved electron beam lithography overlay. Scientific Reports, 2017, 7(1): 6668
CrossRef Pubmed Google scholar
[57]
Seo I C, Woo B H, An S C, Lee E, Jeong H Y, Lim Y, Jun Y C. Electron-beam-induced nanopatterning of J-aggregate thin films for excitonic and photonic response control. Advanced Optical Materials, 2018, 6(20): 1800583
CrossRef Google scholar
[58]
Jung C, Yang Y, Jang J, Badloe T, Lee T, Mun J, Moon S W, Rho J. Near-zero reflection of all-dielectric structural coloration enabling polarization-sensitive optical encryption with enhanced switchability. Nanophotonics, 2020, 10(2): 919–926
CrossRef Google scholar
[59]
Zhou J, Qian H, Chen C F, Zhao J, Li G, Wu Q, Luo H, Wen S, Liu Z. Optical edge detection based on high-efficiency dielectric metasurface. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(23): 11137–11140
CrossRef Pubmed Google scholar
[60]
Jeon T, Kim D H, Park S G. Holographic fabrication of 3D nanostructures. Advanced Materials Interfaces, 2018, 5(18): 1800330
CrossRef Google scholar
[61]
Oh Y, Lim J W, Kim J G, Wang H, Kang B H, Park Y W, Kim H, Jang Y J, Kim J, Kim D H, Ju B K. Plasmonic periodic nanodot arrays via laser interference lithography for organic photovoltaic cells with >10% efficiency. ACS Nano, 2016, 10(11): 10143–10151
CrossRef Pubmed Google scholar
[62]
Bagheri S, Strohfeldt N, Sterl F, Berrier A, Tittl A, Giessen H. Large-area low-cost plasmonic perfect absorber chemical sensor fabricated by laser interference lithography. ACS Sensors, 2016, 1(9): 1148–1154
CrossRef Google scholar
[63]
Do Y S. A highly reproducible fabrication process for large-area plasmonic filters for optical applications. IEEE Access: Practical Innovations, Open Solutions, 2018, 6(1): 68961–68967
CrossRef Google scholar
[64]
Song M, Li X, Pu M, Guo Y, Liu K, Yu H, Ma X, Luo X. Color display and encryption with a plasmonic polarizing metamirror. Nanophotonics, 2018, 7(1): 323–331
CrossRef Google scholar
[65]
Gan Z, Cai J, Liang C, Chen L, Min S, Cheng X, Cui D, Li W D. Patterning of high-aspect-ratio nanogratings using phase-locked two-beam fiber-optic interference lithography. Journal of Vacuum Science & Technology B, Microelectronics and Nanometer Structures, 2019, 37(6): 060601
[66]
Liang G, Wang C, Zhao Z, Wang Y, Yao N, Gao P, Luo Y, Gao G, Zhao Q, Luo X. Squeezing bulk plasmon polaritons through hyperbolic metamaterials for large area deep subwavelength interference lithography. Advanced Optical Materials, 2015, 3(9): 1248–1256
CrossRef Google scholar
[67]
Liu H C, Kong W J, Zhu Q G, Zheng Y, Shen K S, Zhang J, Lu H. Plasmonic interference lithography by coupling the bulk plasmon polariton mode and the waveguide mode. Journal of Physics D, Applied Physics, 2020, 53(13): 135103
CrossRef Google scholar
[68]
Gao P, Pu M, Ma X, Li X, Guo Y, Wang C, Zhao Z, Luo X. Plasmonic lithography for the fabrication of surface nanostructures with a feature size down to 9 nm. Nanoscale, 2020, 12(4): 2415–2421
CrossRef Pubmed Google scholar
[69]
Luo J, Zeng B, Wang C, Gao P, Liu K, Pu M, Jin J, Zhao Z, Li X, Yu H, Luo X. Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography. Nanoscale, 2015, 7(44): 18805–18812
CrossRef Pubmed Google scholar
[70]
Wang C, Zhang W, Zhao Z, Wang Y, Gao P, Luo Y, Luo X. Plasmonic structures, materials and lenses for optical lithography beyond the diffraction limit: A review. Micromachines, 2016, 7(7): 118
CrossRef Pubmed Google scholar
[71]
Kim S K. Impact of plasmonic parameters on 7-nm patterning in plasmonic computational lithography. Journal of Nanoscience and Nanotechnology, 2018, 18(10): 7124–7127
CrossRef Pubmed Google scholar
[72]
Hong F, Blaikie R. Plasmonic lithography: recent progress. Advanced Optical Materials, 2019, 7(14): 1801653
CrossRef Google scholar
[73]
Kim I, Mun J, Baek K M, Kim M, Hao C, Qiu C W, Jung Y S, Rho J. Cascade domino lithography for extreme photon squeezing. Materials Today, 2020, 39(1): 89–97
CrossRef Google scholar
[74]
Kim I, Mun J, Hwang W, Yang Y, Rho J. Capillary-force-induced collapse lithography for controlled plasmonic nanogap structures. Microsystems & Nanoengineering, 2020, 6(1): 65
CrossRef Google scholar
[75]
Nam V B, Giang T T, Koo S, Rho J, Lee D. Laser digital patterning of conductive electrodes using metal oxide nanomaterials. Nano Convergence, 2020, 7(1): 23
CrossRef Pubmed Google scholar
[76]
Chou S Y, Krauss P R, Renstrom P J. Nanoimprint lithography. Journal of Vacuum Science & Technology B, Microelectronics and Nanometer Structures: Processing, Measurement, and Phenomena, 1996, 14(6): 4129–4133
CrossRef Google scholar
[77]
Chou S Y, Krauss P R, Renstrom P J. Imprint lithography with 25-nanometer resolution. Science, 1996, 272(5258): 85–87
CrossRef Google scholar
[78]
Chou S Y. Sub-10 nm imprint lithography and applications. Journal of Vacuum Science & Technology B, Microelectronics and Nanometer Structures: Processing, Measurement, and Phenomena, 1997, 15(6): 2897–2904
CrossRef Google scholar
[79]
Haisma J, Verheijen M, van den Heuvel K, van den Berg J. Mold-assisted nanolithography: a process for reliable pattern replication. Journal of Vacuum Science & Technology B, Microelectronics and Nanometer Structures: Processing, Measurement, and Phenomena, 1996, 14(6): 4124–4128
CrossRef Google scholar
[80]
Austin M D, Ge H, Wu W, Li M, Yu Z, Wasserman D, Lyon S A, Chou S Y. Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography. Applied Physics Letters, 2004, 84(26): 5299–5301
CrossRef Google scholar
[81]
Plachetka U, Bender M, Fuchs A, Vratzov B, Glinsner T, Lindner F, Kurz H. Wafer scale patterning by soft UV-nanoimprint lithography. Microelectronic Engineering, 2004, 73–74(1): 167–171
CrossRef Google scholar
[82]
Sreenivasan S V. Nanoimprint lithography steppers for volume fabrication of leading-edge semiconductor integrated circuits. Microsystems & Nanoengineering, 2017, 3(1): 17075
CrossRef Pubmed Google scholar
[83]
Qiao W, Huang W, Liu Y, Li X, Chen L S, Tang J X. Toward scalable flexible nanomanufacturing for photonic structures and devices. Advanced Materials, 2016, 28(47): 10353–10380
CrossRef Pubmed Google scholar
[84]
Traub M C, Longsine W, Truskett V N. Advances in nanoimprint lithography. Annual Review of Chemical and Biomolecular Engineering, 2016, 7(1): 583–604
CrossRef Pubmed Google scholar
[85]
Kim M, Lee D, Kim T H, Yang Y, Park H J, Rho J. Observation of enhanced optical spin hall effect in a vertical hyperbolic metamaterial. ACS Photonics, 2019, 6(10): 2530–2536
CrossRef Google scholar
[86]
Atighilorestani M, Jiang H, Kaminska B. Electrochromic-polymer-based switchable plasmonic color devices using surface-relief nanostructure pixels. Advanced Optical Materials, 2018, 6(23): 1801179
CrossRef Google scholar
[87]
Lee D, Han S Y, Jeong Y, Nguyen D M, Yoon G, Mun J, Chae J, Lee J H, Ok J G, Jung G Y, Park H J, Kim K, Rho J. Polarization-sensitive tunable absorber in visible and near-infrared regimes. Scientific Reports, 2018, 8(1): 12393
CrossRef Pubmed Google scholar
[88]
Zhang H, Kinnear C, Mulvaney P. Fabrication of single-nanocrystal arrays. Advanced Materials, 2020, 32(18): e1904551
CrossRef Pubmed Google scholar
[89]
Yoon G, Kim I, Rho J. Challenges in fabrication towards realization of practical metamaterials. Microelectronic Engineering, 2016, 163(1): 7–20
CrossRef Google scholar
[90]
Yao Y, Liu H, Wang Y, Li Y, Song B, Wang R P, Povinelli M L, Wu W. Nanoimprint-defined, large-area meta-surfaces for unidirectional optical transmission with superior extinction in the visible-to-infrared range. Optics Express, 2016, 24(14): 15362–15372
CrossRef Pubmed Google scholar
[91]
Lee G Y, Hong J Y, Hwang S, Moon S, Kang H, Jeon S, Kim H, Jeong J H, Lee B. Metasurface eyepiece for augmented reality. Nature Communications, 2018, 9(1): 4562
CrossRef Pubmed Google scholar
[92]
Wan Y H, Krueger N A, Ocier C R, Su P, Braun P V, Cunningham B T. Resonant mode engineering of photonic crystal sensors clad with ultralow refractive index porous silicon dioxide. Advanced Optical Materials, 2017, 5(21): 1700605
CrossRef Google scholar
[93]
Sutherland B R, Sargent E H. Perovskite photonic sources. Nature Photonics, 2016, 10(5): 295–302
CrossRef Google scholar
[94]
Chun D H, Choi Y J, In Y, Nam J K, Choi Y J, Yun S, Kim W, Choi D, Kim D, Shin H, Cho J H, Park J H. Halide perovskite nanopillar photodetector. ACS Nano, 2018, 12(8): 8564–8571
CrossRef Pubmed Google scholar
[95]
Pourdavoud N, Wang S, Mayer A, Hu T, Chen Y, Marianovich A, Kowalsky W, Heiderhoff R, Scheer H C, Riedl T. Photonic nanostructures patterned by thermal nanoimprint directly into organo-metal halide perovskites. Advanced Materials, 2017, 29(12): 1605003
CrossRef Pubmed Google scholar
[96]
Mao J, Sha W E I, Zhang H, Ren X G, Zhuang J Q, Roy V A L, Wong K S, Choy W C H. Novel direct nanopatterning approach to fabricate periodically nanostructured perovskite for optoelectronic applications. Advanced Functional Materials, 2017, 27(10): 1606525
CrossRef Google scholar
[97]
Makarov S V, Milichko V, Ushakova E V, Omelyanovich M, Pasaran A C, Haroldson R, Balachandran B, Wang H L, Hu W, Kivshar Y S, Zakhidov A A. Multifold emission enhancement in nanoimprinted hybrid perovskite metasurfaces. ACS Photonics, 2017, 4(4): 728–735
CrossRef Google scholar
[98]
Wang H, Liu S C, Balachandran B, Moon J, Haroldson R, Li Z, Ishteev A, Gu Q, Zhou W, Zakhidov A, Hu W. Nanoimprinted perovskite metasurface for enhanced photoluminescence. Optics Express, 2017, 25(24): A1162–A1171
CrossRef Pubmed Google scholar
[99]
Baek S W, Molet P, Choi M J, Biondi M, Ouellette O, Fan J, Hoogland S, García de Arquer F P, Mihi A, Sargent E H. Nanostructured back reflectors for efficient colloidal quantum-dot infrared optoelectronics. Advanced Materials, 2019, 31(33): e1901745
CrossRef Pubmed Google scholar
[100]
Kim Y, Bicanic K, Tan H, Ouellette O, Sutherland B R, García de Arquer F P, Jo J W, Liu M, Sun B, Liu M, Hoogland S, Sargent E H. Nanoimprint-transfer-patterned solids enhance light absorption in colloidal quantum dot solar cells. Nano Letters, 2017, 17(4): 2349–2353
CrossRef Pubmed Google scholar
[101]
Pina-Hernandez C, Koshelev A, Dhuey S, Sassolini S, Sainato M, Cabrini S, Munechika K. Nanoimprinted high-refractive index active photonic nanostructures based on quantum dots for visible light. Scientific Reports, 2017, 7(1): 17645
CrossRef Pubmed Google scholar
[102]
Guo L J. Nanoimprint lithography: methods and material requirements. Advanced Materials, 2007, 19(4): 495–513
CrossRef Google scholar
[103]
Wang C, Shao J, Tian H, Li X, Ding Y, Li B Q. Step-controllable electric-field-assisted nanoimprint lithography for uneven large-area substrates. ACS Nano, 2016, 10(4): 4354–4363
CrossRef Pubmed Google scholar
[104]
Ahn S H, Guo L J. High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates. Advanced Materials, 2008, 20(11): 2044–2049
CrossRef Google scholar
[105]
Lee S H, Kim S W, Kang B S, Chang P S, Kwak M K. Scalable and continuous fabrication of bio-inspired dry adhesives with a thermosetting polymer. Soft Matter, 2018, 14(14): 2586–2593
CrossRef Pubmed Google scholar
[106]
Wong H C, Grenci G, Wu J, Viasnoff V, Low H Y. Roll-to-roll fabrication of residual-layer-free micro/nanoscale membranes with precise pore architectures and tunable surface textures. Industrial & Engineering Chemistry Research, 2018, 57(41): 13759–13768
CrossRef Google scholar
[107]
Wang Z Z, Yi P Y, Peng L F, Lai X M, Ni J. Continuous fabrication of highly conductive and transparent Ag mesh electrodes for flexible electronics. IEEE Transactions on Nanotechnology, 2017, 16(4): 687–694
CrossRef Google scholar
[108]
Yi P Y, Zhang C P, Peng L F, Lai X M. Flexible silver-mesh electrodes with moth-eye nanostructures for transmittance enhancement by double-sided roll-to-roll nanoimprint lithography. RSC Advances, 2017, 7(77): 48835–48840
CrossRef Google scholar
[109]
Lee N, Yoo S, Kim C H, Lim J. Development of continuous metal patterns using two-dimensional atmospheric-pressure plasma-jet: On application to fabricate electrode on a flexible surface for film touch sensor. Journal of Micromechanics and Microengineering, 2019, 29(4): 045013
CrossRef Google scholar
[110]
Wang L J, Zheng Y S, Wu C, Jia S L. Experimental investigation of photoresist etching by kHz AC atmospheric pressure plasma jet. Applied Surface Science, 2016, 385(1): 191–198
CrossRef Google scholar
[111]
Zhou Y Q, Li M J, Shen L G, Ye H C, Wang J P, Huang S Z. Effect of resin accumulation on filling process in roll-to-roll UV imprint lithography. Journal of Vacuum Science & Technology B, Microelectronics and Nanometer Structures, 2017, 35(3): 031602
[112]
Tahir U, Kamran M A, Jeong M Y. Numerical study on the optimization of roll-to-roll ultraviolet imprint lithography. Coatings, 2019, 9(9): 573
CrossRef Google scholar
[113]
Kotz F, Schneider N, Striegel A, Wolfschläger A, Keller N, Worgull M, Bauer W, Schild D, Milich M, Greiner C, Helmer D, Rapp B E. Glassomer-processing fused silica glass like a polymer. Advanced Materials, 2018, 30(22): e1707100
CrossRef Pubmed Google scholar
[114]
Leitgeb M, Nees D, Ruttloff S, Palfinger U, Götz J, Liska R, Belegratis M R, Stadlober B. Multilength scale patterning of functional layers by roll-to-roll ultraviolet-light-assisted nanoimprint lithography. ACS Nano, 2016, 10(5): 4926–4941
CrossRef Pubmed Google scholar
[115]
Koo S, Lee S H, Kim J D, Hong J G, Baac H W, Kwak M K, Ok J G. Controlled airbrush coating of polymer resists in roll-to-roll nanoimprinting with regimented residual layer thickness. International Journal of Precision Engineering and Manufacturing, 2016, 17(7): 943–947
CrossRef Google scholar
[116]
Lee J H, Na M, Kim J, Yoo K, Park J, Kim J D, Oh D K, Lee S, Youn H, Kwak M K, Ok J G. Rapid and conformal coating of polymer resins by airbrushing for continuous and high-speed roll-to-roll nanopatterning: parametric quality controls and extended applications. Nano Convergence, 2017, 4(1): 11
CrossRef Pubmed Google scholar
[117]
Kodihalli Shivaprakash N, Ferraguto T, Panwar A, Banerjee S S, Barry C F, Mead J. Fabrication of flexible polymer molds for polymer microstructuring by roll-to-roll hot embossing. ACS Omega, 2019, 4(7): 12480–12488
CrossRef Pubmed Google scholar
[118]
Striegel A, Schneider M, Schneider N, Benkel C, Worgull M. Seamless tool fabrication for roll-to-roll microreplication. Microelectronic Engineering, 2018, 194(1): 8–14
CrossRef Google scholar
[119]
Zhang X Q, Huang R, Liu K, Kumar A S, Shan X C. Rotating-tool diamond turning of Fresnel lenses on a roller mold for manufacturing of functional optical film. Precision Engineering, 2018, 51(1): 445–457
CrossRef Google scholar
[120]
Lee Y H, Ke K C, Chang N W, Yang S Y. Development of an UV rolling system for fabrication of micro/nano structure on polymeric films using a gas-roller-sustained seamless PDMS mold. Microsystem Technologies, 2018, 24(7): 2941–2948
CrossRef Google scholar
[121]
Lee C R, Ok J G, Jeong M Y. Nanopatterning on the cylindrical surface using an e-beam pre-mapping algorithm. Journal of Micromechanics and Microengineering, 2019, 29(1): 015004
CrossRef Google scholar
[122]
Dumond J J, Low H Y, Lee H P, Fuh J Y H. Multi-functional silicone stamps for reactive release agent transfer in UV roll-to-roll nanoimprinting. Materials Horizons, 2016, 3(2): 152–160
CrossRef Google scholar
[123]
Odom T W, Love J C, Wolfe D B, Paul K E, Whitesides G M. Improved pattern transfer in soft lithography using composite stamps. Langmuir, 2002, 18(13): 5314–5320
CrossRef Google scholar
[124]
Kim S, Hyun S, Lee J, Lee K S, Lee W, Kim J K. Anodized aluminum oxide/polydimethylsiloxane hybrid mold for roll-to-roll nanoimprinting. Advanced Functional Materials, 2018, 28(23): 1800197
CrossRef Google scholar
[125]
Ansari K, Kan J, Bettiol A A, Watt F. Stamps for nanoimprint lithography fabricated by proton beam writing and nickel electroplating. Journal of Micromechanics and Microengineering, 2006, 16(10): 1967–1974
CrossRef Google scholar
[126]
Liu F, Tan K B, Malar P, Bikkarolla S K, van Kan J A. Fabrication of nickel molds using proton beam writing for micro/nano fluidic devices. Microelectronic Engineering, 2013, 102(1): 36–39
CrossRef Google scholar
[127]
Lin X, Dou X, Wang X, Chen R T. Nickel electroplating for nanostructure mold fabrication. Journal of Nanoscience and Nanotechnology, 2011, 11(8): 7006–7010
CrossRef Pubmed Google scholar
[128]
Kwak M K, Ok J G, Lee S H, Guo L J. Visually tolerable tiling (VTT) for making a large-area flexible patterned surface. Materials Horizons, 2015, 2(1): 86–90
CrossRef Google scholar
[129]
Ok J G, Ahn S H, Kwak M K, Guo L J. Continuous and high-throughput nanopatterning methodologies based on mechanical deformation. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2013, 1(46): 7681–7691
CrossRef Google scholar
[130]
Ok J G, Shin Y J, Park H J, Guo L J. A step toward next-generation nanoimprint lithography: extending productivity and applicability. Applied Physics A, Materials Science & Processing, 2015, 121(2): 343–356
CrossRef Google scholar
[131]
Ok J G, Park H J, Kwak M K, Pina-Hernandez C A, Ahn S H, Guo L J. Continuous patterning of nanogratings by nanochannel-guided lithography on liquid resists. Advanced Materials, 2011, 23(38): 4444–4448
CrossRef Pubmed Google scholar
[132]
Ahn S H, Guo L J. Dynamic nanoinscribing for continuous and seamless metal and polymer nanogratings. Nano Letters, 2009, 9(12): 4392–4397
CrossRef Pubmed Google scholar
[133]
Oh D K, Nguyen D T, Lee S, Ko P, Heo G S, Yun C H, Ha T W, Youn H, Ok J G. Facile and scalable fabrication of flexible reattachable ionomer nanopatterns by continuous multidimensional nanoinscribing and low-temperature roll imprinting. ACS Applied Materials & Interfaces, 2019, 11(12): 12070–12076
CrossRef Pubmed Google scholar
[134]
Oh D K, Lee S, Lee S H, Lee W, Yeon G, Lee N, Han K S, Jung S, Kim D H, Lee D Y, Lee S H, Park H J, Ok J G. Tailored nanopatterning by controlled continuous nanoinscribing with tunable shape, depth, and dimension. ACS Nano, 2019, 13(10): 11194–11202
CrossRef Pubmed Google scholar
[135]
Ahn S H, Ok J G, Kwak M K, Lee K T, Lee J Y, Guo L J. Template-free vibrational indentation patterning (VIP) of micro/nanometer-scale grating structures with real-time pitch and angle tunability. Advanced Functional Materials, 2013, 23(37): 4739–4744
CrossRef Google scholar
[136]
Ok J G, Panday A, Lee T, Jay Guo L. Continuous fabrication of scalable 2-dimensional (2D) micro- and nanostructures by sequential 1D mechanical patterning processes. Nanoscale, 2014, 6(24): 14636–14642
CrossRef Pubmed Google scholar
[137]
Ahiboz D, Manley P, Becker C. Adjustable large-area dielectric metasurfaces for near-normal oblique incident excitation. OSA Continuum, 2020, 3(4): 971–981
CrossRef Google scholar
[138]
Zhu J, Wang Z, Lin S, Jiang S, Liu X, Guo S. Low-cost flexible plasmonic nanobump metasurfaces for label-free sensing of serum tumor marker. Biosensors & Bioelectronics, 2020, 150(1): 111905
CrossRef Pubmed Google scholar
[139]
Das Gupta T, Martin-Monier L, Yan W, Le Bris A, Nguyen-Dang T, Page A G, Ho K T, Yesilköy F, Altug H, Qu Y, Sorin F. Self-assembly of nanostructured glass metasurfaces via templated fluid instabilities. Nature Nanotechnology, 2019, 14(4): 320–327
CrossRef Pubmed Google scholar
[140]
Shneidman A V, Becker K P, Lukas M A, Torgerson N, Wang C, Reshef O, Burek M J, Paul K, McLellan J, Lončar M. All-polymer integrated optical resonators by roll-to-roll nanoimprint lithography. ACS Photonics, 2018, 5(5): 1839–1845
CrossRef Google scholar
[141]
Zhang C, Yi P, Peng L, Lai X, Chen J, Huang M, Ni J. Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate. Scientific Reports, 2017, 7(1): 39814
CrossRef Pubmed Google scholar
[142]
Suresh V, Ding L, Chew A B, Yap F L. Fabrication of large-area flexible SERS substrates by nanoimprint lithography. ACS Applied Nano Materials, 2018, 1(2): 886–893
CrossRef Google scholar
[143]
Deng Y, Yi P, Peng L, Lai X, Lin Z. Experimental investigation on the large-area fabrication of micro-pyramid arrays by roll-to-roll hot embossing on PVC film. Journal of Micromechanics and Microengineering, 2014, 24(4): 045023
CrossRef Google scholar
[144]
Højlund-Nielsen E, Clausen J, Mäkela T, Thamdrup L H, Zalkovskij M, Nielsen T, Li Pira N, Ahopelto J, Mortensen N A, Kristensen A. Plasmonic colors: toward mass production of metasurfaces. Advanced Materials Technologies, 2016, 1(7): 1600054
CrossRef Google scholar
[145]
Murthy S, Pranov H, Feidenhans’l N A, Madsen J S, Hansen P E, Pedersen H C, Taboryski R. Plasmonic color metasurfaces fabricated by a high speed roll-to-roll method. Nanoscale, 2017, 9(37): 14280–14287
CrossRef Pubmed Google scholar
[146]
Ok J G, Youn H S, Kwak M K, Lee K T, Shin Y J, Guo L J, Greenwald A, Liu Y S. Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters. Applied Physics Letters, 2012, 101(22): 223102
CrossRef Google scholar
[147]
Wi J S, Lee S, Lee S H, Oh D K, Lee K T, Park I, Kwak M K, Ok J G. Facile three-dimensional nanoarchitecturing of double-bent gold strips on roll-to-roll nanoimprinted transparent nanogratings for flexible and scalable plasmonic sensors. Nanoscale, 2017, 9(4): 1398–1402
CrossRef Pubmed Google scholar
[148]
Wi J S, Oh D K, Kwak M K, Ok J G. Size-dependent detection sensitivity of spherical particles sitting on a double-bent gold strip array. Optical Materials Express, 2018, 8(7): 1774–1779
CrossRef Google scholar
[149]
Jeon S, Shir D J, Nam Y S, Nidetz R, Highland M, Cahill D G, Rogers J A, Su M F, El-Kady I F, Christodoulou C G, Bogart G R. Molded transparent photopolymers and phase shift optics for fabricating three dimensional nanostructures. Optics Express, 2007, 15(10): 6358–6366
CrossRef Pubmed Google scholar
[150]
Choi J H, Oh C M, Jang J W. Micro- and nano-patterns fabricated by embossed microscale stamp with trenched edges. RSC Advances, 2017, 7(51): 32058–32064
CrossRef Google scholar
[151]
Yanagishita T, Murakoshi K, Kondo T, Masuda H. Preparation of superhydrophobic surfaces with micro/nano alumina molds. RSC Advances, 2018, 8(64): 36697–36704
CrossRef Google scholar
[152]
Kim S J, Jung P H, Kim W, Lee H, Hong S H. Generation of highly integrated multiple vivid colours using a three-dimensional broadband perfect absorber. Scientific Reports, 2019, 9(1): 14859
CrossRef Pubmed Google scholar
[153]
Jeong H E, Lee J K, Kim H N, Moon S H, Suh K Y. A nontransferring dry adhesive with hierarchical polymer nanohairs. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(14): 5639–5644
CrossRef Pubmed Google scholar
[154]
Karageorgiev P, Neher D, Schulz B, Stiller B, Pietsch U, Giersig M, Brehmer L. From anisotropic photo-fluidity towards nanomanipulation in the optical near-field. Nature Materials, 2005, 4(9): 699–703
CrossRef Pubmed Google scholar
[155]
Choi J, Cho W, Jung Y S, Kang H S, Kim H T. Direct fabrication of micro/nano-patterned surfaces by vertical-directional photofluidization of azobenzene materials. ACS Nano, 2017, 11(2): 1320–1327
CrossRef Pubmed Google scholar
[156]
Choi J, Jo W, Lee S Y, Jung Y S, Kim S H, Kim H T. Flexible and robust superomniphobic surfaces created by localized photofluidization of azopolymer pillars. ACS Nano, 2017, 11(8): 7821–7828
CrossRef Pubmed Google scholar
[157]
Liu Z, Cui Q, Huang Z, Guo L J. Transparent colored display enabled by flat glass waveguide and nanoimprinted multilayer gratings. ACS Photonics, 2020, 7(6): 1418–1424
CrossRef Google scholar
[158]
Kothari R, Beaulieu M R, Hendricks N R, Li S, Watkins J J. Direct patterning of robust one-dimensional, two-dimensional, and three-dimensional crystalline metal oxide nanostructures using imprint lithography and nanoparticle dispersion inks. Chemistry of Materials, 2017, 29(9): 3908–3918
CrossRef Google scholar
[159]
Li W, Zhou Y, Howell I R, Gai Y, Naik A R, Li S, Carter K R, Watkins J J. Direct imprinting of scalable, high-performance woodpile electrodes for three-dimensional lithium-ion nanobatteries. ACS Applied Materials & Interfaces, 2018, 10(6): 5447–5454
CrossRef Pubmed Google scholar
[160]
Liu D M, Wang Q K, Wang Q. Transfer the multiscale texture of crystalline Si onto thin-film micromorph cell by UV nanoimprint for light trapping. Applied Surface Science, 2018, 439(1): 168–175
CrossRef Google scholar
[161]
Choi J, Jia Z, Park S. Fabrication of polymeric dual-scale nanoimprint molds using a polymer stencil membrane. Microelectronic Engineering, 2018, 199(1): 101–105
CrossRef Pubmed Google scholar
[162]
Han K S, Hong S H, Kim K I, Cho J Y, Choi K W, Lee H. Fabrication of 3D nano-structures using reverse imprint lithography. Nanotechnology, 2013, 24(4): 045304
CrossRef Pubmed Google scholar
[163]
Kwon Y W, Park J, Kim T, Kang S H, Kim H, Shin J, Jeon S, Hong S W. Flexible near-field nanopatterning with ultrathin, conformal phase masks on nonplanar substrates for biomimetic hierarchical photonic structures. ACS Nano, 2016, 10(4): 4609–4617
CrossRef Pubmed Google scholar
[164]
Wang C, Shao J, Lai D, Tian H, Li X. Suspended-template electric-assisted nanoimprinting for hierarchical micro-nanostructures on a fragile substrate. ACS Nano, 2019, 13(9): 10333–10342
CrossRef Pubmed Google scholar
[165]
Chandramohan A, Sibirev N V, Dubrovskii V G, Petty M C, Gallant A J, Zeze D A. Model for large-area monolayer coverage of polystyrene nanospheres by spin coating. Scientific Reports, 2017, 7(1): 40888
CrossRef Pubmed Google scholar
[166]
Nakagawa M, Nakaya A, Hoshikawa Y, Ito S, Hiroshiba N, Kyotani T. Size-dependent filling behavior of UV-curable di(meth)acrylate resins into carbon-coated anodic aluminum oxide pores of around 20 nm. ACS Applied Materials & Interfaces, 2016, 8(44): 30628–30634
CrossRef Pubmed Google scholar
[167]
Hua F, Sun Y G, Gaur A, Meitl M A, Bilhaut L, Rotkina L, Wang J F, Geil P, Shim M, Rogers J A, Shim A. Polymer imprint lithography with molecular-scale resolution. Nano Letters, 2004, 4(12): 2467–2471
CrossRef Google scholar
[168]
Yim W, Park S J, Han S Y, Park Y H, Lee S W, Park H J, Ahn Y H, Lee S, Park J Y. Carbon nanotubes as etching masks for the formation of polymer nanostructures. ACS Applied Materials & Interfaces, 2017, 9(50): 44053–44059
CrossRef Pubmed Google scholar
[169]
Pi S, Lin P, Xia Q. Fabrication of sub-10 nm metal nanowire arrays with sub-1 nm critical dimension control. Nanotechnology, 2016, 27(46): 464004
CrossRef Pubmed Google scholar
[170]
Woo J Y, Jo S, Oh J H, Kim J T, Han C S. Facile and precise fabrication of 10-nm nanostructures on soft and hard substrates. Applied Surface Science, 2019, 484(1): 317–325
CrossRef Google scholar
[171]
Lim S H, Saifullah M S, Hussain H, Loh W W, Low H Y. Direct imprinting of high resolution TiO2 nanostructures. Nanotechnology, 2010, 21(28): 285303
CrossRef Pubmed Google scholar
[172]
Menumerov E, Golze S D, Hughes R A, Neretina S. Arrays of highly complex noble metal nanostructures using nanoimprint lithography in combination with liquid-phase epitaxy. Nanoscale, 2018, 10(38): 18186–18194
CrossRef Pubmed Google scholar
[173]
Pina-Hernandez C, Fu P F, Guo L J. Ultrasmall structure fabrication via a facile size modification of nanoimprinted functional silsesquioxane features. ACS Nano, 2011, 5(2): 923–931
CrossRef Pubmed Google scholar
[174]
Yao Y H, Wang Y F, Liu H, Li Y R, Song B X, Wu W. Line width tuning and smoothening for periodical grating fabrication in nanoimprint lithography. Applied Physics A, Materials Science & Processing, 2015, 121(2): 399–403
CrossRef Google scholar
[175]
Wang S S, Magnusson R. Theory and applications of guided-mode resonance filters. Applied Optics, 1993, 32(14): 2606–2613
CrossRef Pubmed Google scholar
[176]
Liu Z. One-step fabrication of crystalline metal nanostructures by direct nanoimprinting below melting temperatures. Nature Communications, 2017, 8(1): 14910
CrossRef Pubmed Google scholar
[177]
Bhadauriya S, Wang X, Pitliya P, Zhang J, Raghavan D, Bockstaller M R, Stafford C M, Douglas J F, Karim A. Tuning the relaxation of nanopatterned polymer films with polymer-grafted nanoparticles: observation of entropy-enthalpy compensation. Nano Letters, 2018, 18(12): 7441–7447
CrossRef Pubmed Google scholar
[178]
Liu L, Zhang Q, Lu Y S, Du W, Li B, Cui Y S, Yuan C S, Zhan P, Ge H X, Wang Z L, Chen Y F. A high-performance and low cost SERS substrate of plasmonic nanopillars on plastic film fabricated by nanoimprint lithography with AAO template. AIP Advances, 2017, 7(6): 065205
CrossRef Google scholar
[179]
Jung Y, Hwang I, Yu J, Lee J, Choi J H, Jeong J H, Jung J Y, Lee J. Fano metamaterials on nanopedestals for plasmon-enhanced infrared spectroscopy. Scientific Reports, 2019, 9(1): 7834
CrossRef Pubmed Google scholar
[180]
Yao Y H, Wu W. All-dielectric heterogeneous metasurface as an efficient ultra-broadband reflector. Advanced Optical Materials, 2017, 5(14): 1700090
CrossRef Google scholar
[181]
Hemmati H, Magnusson R. Resonant dual-grating metamembranes supporting spectrally narrow bound states in the continuum. Advanced Optical Materials, 2019, 7(20): 1900754
CrossRef Google scholar
[182]
Zhang C, Subbaraman H, Li Q, Pan Z, Ok J G, Ling T, Chung C J, Zhang X, Lin X, Chen R T, Guo L J. Printed photonic elements: nanoimprinting and beyond. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2016, 4(23): 5133–5153
CrossRef Google scholar
[183]
Lee K T, Jang J Y, Park S J, Ji C G, Yang S M, Guo L J, Park H J. Angle-insensitive and CMOS-compatible subwavelength color printing. Advanced Optical Materials, 2016, 4(11): 1696–1702
CrossRef Google scholar
[184]
Liu H, Yang H, Li Y R, Song B X, Wang Y F, Liu Z R, Peng L, Lim H, Yoon J, Wu W. Switchable all-dielectric metasurfaces for full-color reflective display. Advanced Optical Materials, 2019, 7(8): 1801639
CrossRef Google scholar
[185]
Joo W J, Kyoung J, Esfandyarpour M, Lee S H, Koo H, Song S, Kwon Y N, Song S H, Bae J C, Jo A, Kwon M J, Han S H, Kim S H, Hwang S, Brongersma M L. Metasurface-driven OLED displays beyond 10000 pixels per inch. Science, 2020, 370(6515): 459–463
CrossRef Pubmed Google scholar
[186]
Yoon G, Kim K, Kim S U, Han S, Lee H, Rho J. Printable nanocomposite metalens for high-contrast near-infrared imaging. ACS Nano, 2021, 15(1): 698–706
CrossRef Pubmed Google scholar
[187]
Checcucci S, Bottein T, Gurioli M, Favre L, Grosso D, Abbarchi M. Multifunctional metasurfaces based on direct nanoimprint of titania sol-gel coatings. Advanced Optical Materials, 2019, 7(10): 1801406
CrossRef Google scholar
[188]
Kim K, Yoon G, Baek S, Rho J, Lee H. Facile nanocasting of dielectric metasurfaces with sub-100 nm resolution. ACS Applied Materials & Interfaces, 2019, 11(29): 26109–26115
CrossRef Pubmed Google scholar
[189]
Yoon G, Kim K, Huh D, Lee H, Rho J. Single-step manufacturing of hierarchical dielectric metalens in the visible. Nature Communications, 2020, 11(1): 2268
CrossRef Pubmed Google scholar
[190]
Gopalan K K, Paulillo B, Mackenzie D M A, Rodrigo D, Bareza N, Whelan P R, Shivayogimath A, Pruneri V. Scalable and tunable periodic graphene nanohole arrays for mid-infrared plasmonics. Nano Letters, 2018, 18(9): 5913–5918
CrossRef Pubmed Google scholar
[191]
Zhao Z J, Lee M, Kang H, Hwang S, Jeon S, Park N, Park S H, Jeong J H. Eight inch wafer-scale flexible polarization-dependent color filters with Ag-TiO2 composite nanowires. ACS Applied Materials & Interfaces, 2018, 10(10): 9188–9196
CrossRef Pubmed Google scholar
[192]
Driencourt L, Federspiel F, Kazazis D, Tseng L T, Frantz R, Ekinci Y, Ferrini R, Gallinet B. Electrically tunable multicolored filter using birefringent plasmonic resonators and liquid crystals. ACS Photonics, 2020, 7(2): 444–453
CrossRef Google scholar
[193]
Shin Y J, Pina-Hernandez C, Wu Y K, Ok J G, Guo L J. Facile route of flexible wire grid polarizer fabrication by angled-evaporations of aluminum on two sidewalls of an imprinted nanograting. Nanotechnology, 2012, 23(34): 344018
CrossRef Pubmed Google scholar
[194]
Matricardi C, Garcia-Pomar J L, Molet P, Perez L A, Alonso M I, Campoy-Quiles M, Mihi A. High-throughput nanofabrication of metasurfaces with polarization-dependent response. Advanced Optical Materials, 2020, 8(20): 2000786
CrossRef Google scholar
[195]
Yoon G, Kim K, Kim S U, Han S, Lee H, Rho J. Printable nanocomposite metalens for high-contrast near-infrared imaging. ACS Nano, 2021, 15(1): 698–706
CrossRef Pubmed Google scholar
[196]
Yang Y, Yoon G, Park S, Namgung S D, Badloe T, Nam K T, Rho J. Revealing structural disorder in hydrogenated amorphous silicon for a low-loss photonic platform at visible frequencies. Advanced Materials, 2021, 33(9): e2005893
CrossRef Pubmed Google scholar
[197]
Oh D K, Jeong H, Kim J, Kim Y, Kim I, Ok J G, Rho J. Top-down nanofabrication approaches toward single-digit-nanometer scale structures. Journal of Mechanical Science and Technology, 20201, 35(3): 837–859
CrossRef Google scholar
[198]
Stolt T, Kim J, Héron S, Vesala A, Yang Y, Mun J, Kim M, Huttunen M J, Czaplicki R, Kauranen M, Rho J, Genevet P. Backward phase-matched second-harmonic generation from stacked metasurfaces. Physical Review Letters, 2021, 126(3): 033901
CrossRef Pubmed Google scholar
[199]
Lee D, Go M, Kim M, Jang J, Choi C, Kim J K, Rho J. Multiple-patterning colloidal lithography-implemented scalable manufacturing of heat-tolerant titanium nitride broadband absorbers in the visible to near-infrared. Microsystems & Nanoengineering, 2021, 7(1): 14
CrossRef Google scholar
[200]
Kim I, Ansari M A, Mehmood M Q, Kim W S, Jang J, Zubair M, Kim Y K, Rho J. Stimuli-responsive dynamic metaholographic displays with designer liquid crystal modulators. Advanced Materials, 2020, 32(50): e2004664
CrossRef Pubmed Google scholar
[201]
Chen Y, Ai B, Wong Z J. Soft optical metamaterials. Nano Convergence, 2020, 7(1): 18
CrossRef Pubmed Google scholar
[202]
Naveed M A, Ansari M A, Kim I, Badloe T, Kim J, Oh D K, Riaz K, Tauqeer T, Younis U, Saleem M, Anwar M S, Zubair M, Mehmood M Q, Rho J. Optical spin-symmetry breaking for high-efficiency directional helicity-multiplexed metaholograms. Microsystems & Nanoengineering, 2021, 7(1): 5
CrossRef Google scholar

Acknowledgements

This work was financially supported by the National Research Foundation (NRF) grant (NRF-2019R1A2C3003129) funded by the Ministry of Science and ICT, Republic of Korea. T.L. acknowledges the NRF Global Ph.D. fellowship (NRF-2019H1A2A1076295) funded by the Ministry of Education, Republic of Korea.

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(7452 KB)

Accesses

Citations

Detail

Sections
Recommended

/