Light-emission organic solar cells with MoO3:Al interfacial layer–preparation and characterizations
Xinran LI, Yanhui LOU, Zhaokui WANG
Light-emission organic solar cells with MoO3:Al interfacial layer–preparation and characterizations
A light-emitting organic solar cell (LE-OSC) with electroluminescence (EL) and photovoltaic (PV) properties is successfully fabricated by connecting the EL and PV units using a MoO3:Al co-evaporation interfacial layer, which has suitable work function and good transmittance. PV and EL units are fabricated based on poly(3-hexylthiophene) (P3HT)-indene-C60 bisadduct (IC60BA) blends, and 4,4′-bis (N-carbazolyl) biphenyl-fac-tris (2-phenylpyridine) iridium (Ir(ppy)3), respectively. The work function and the transmittance of the MoO3:Al co-evaporation are measured and adjusted by the ultraviolet photoelectron spectroscopy and the optical spectrophotometer to obtain the better bi-functional device performance. The forward- and reverse-biased current density-voltage characteristics in dark and under illumination are evaluated to better understand the operational mechanism of the LE-OSCs. A maximum luminance of 1550 cd/m2 under forward bias and a power conversion efficiency of 0.24% under illumination (100 mW/cm2) are achieved in optimized LE-OSCs. The proposed device structure is expected to provide valuable information in the film conditions for understanding the polymer blends internal conditions and meliorating the film qualities.
organic solar cell (OSC) / polymer-fullerene / light emission / MoO3:Al interfacial layer
[1] |
Green M A, Hishikawa Y, Dunlop E D, Levi D H, Hohl-Ebinger J, Yoshita M, Ho-Baillie A W Y. Solar cell efficiency tables. Progress in Photovoltaics: Research and Applications, 2019, 27(1): 3–12
CrossRef
Google scholar
|
[2] |
Jørgensen M, Norrman K, Gevorgyan S A, Tromholt T, Andreasen B, Krebs F C. Stability of polymer solar cells. Advanced Materials, 2012, 24(5): 580–612
CrossRef
Pubmed
Google scholar
|
[3] |
Kumar P, Chand S. Recent progress and future aspects of organic solar cells. Progress in Photovoltaics: Research and Applications, 2012, 20(4): 377–415
CrossRef
Google scholar
|
[4] |
Kroon R, Lenes M, Hummelen J, Blom P, Boer B. Small bandgap polymers for organic solar cells (polymer material development in the last 5 years). Polymer Reviews (Philadelphia, Pa.), 2008, 48(3): 531–582
CrossRef
Google scholar
|
[5] |
Dou L, You J, Yang J, Chen C, He Y, Murase S, Moriarty T, Emery K, Li G, Yang Y. Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nature Photonics, 2012, 6(3): 180–185
CrossRef
Google scholar
|
[6] |
Honda S, Nogami T, Ohkita H, Benten H, Ito S. Improvement of the light-harvesting efficiency in polymer/fullerene bulk heterojunction solar cells by interfacial dye modification. ACS Applied Materials & Interfaces, 2009, 1(4): 804–810
CrossRef
Pubmed
Google scholar
|
[7] |
Suresh P, Balraju P, Sharma G D, Mikroyannidis J A, Stylianakis M M. Effect of the incorporation of a low-band-gap small molecule in a conjugated vinylene copolymer: PCBM blend for organic photovoltaic devices. ACS Applied Materials & Interfaces, 2009, 1(7): 1370–1374
CrossRef
Pubmed
Google scholar
|
[8] |
Reese M O, Nardes A, Rupert M B L, Larsen R E, Olson D C, Lloyd M T, Shaheen S E, Ginley D S, Rumbles G, Kopidakis N. Photoinduced degradation of polymer and polymer–fullerene active layers: experiment and theory. Advanced Functional Materials, 2010, 20(20): 3476–3483
CrossRef
Google scholar
|
[9] |
Abad J, Urbina A, Colchero J. Influence of UV radiation and ozone exposure on the electro-optical properties and nanoscale structure of P3OT films. Organic Electronics, 2011, 12(8): 1389–1398
CrossRef
Google scholar
|
[10] |
Krebs F C, Tromholt T, Jørgensen M. Upscaling of polymer solar cell fabrication using full roll-to-roll processing. Nanoscale, 2010, 2(6): 873–886
CrossRef
Pubmed
Google scholar
|
[11] |
Schäfer S, Petersen A, Wagner T, Kniprath R, Lingenfelser D, Zen A, Kirchartz T, Zimmermann B, Würfel U, Feng X, Mayer T. Influence of the indium tin oxide/organic interface on open-circuit voltage, recombination, and cell degradation in organic small-molecule solar cells. Physical Review B, 2011, 83(16): 165311
CrossRef
Google scholar
|
[12] |
Yu G, Gao J, Hummelen J, Wudl F, Heeger A. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270(5243): 1789–1791
CrossRef
Google scholar
|
[13] |
Wang M, Tang Q, An J, Xie F, Chen J, Zheng S, Wong K, Miao Q, Xu J. Performance and stability improvement of P3HT:PCBM-based solar cells by thermally evaporated chromium oxide (CrOx) interfacial layer. ACS Applied Materials & Interfaces, 2010, 2(10): 2699–2702
CrossRef
Google scholar
|
[14] |
Hains A W, Liu J, Martinson A B F, Irwin M D, Marks T J. Anode interfacial tuning via electron-blocking/hole-transport layers and indium tin oxide surface treatment in bulk-heterojunction organic photovoltaic cells. Advanced Functional Materials, 2010, 20(4): 595–606
CrossRef
Google scholar
|
[15] |
Xu M, Cui L, Zhu X, Gao C, Shi X, Jin Z, Wang Z, Liao L. Aqueous solution-processed MoO3 as an effective interfacial layer in polymer/fullerene based organic solar cells. Organic Electronics, 2013, 14(2): 657–664
CrossRef
Google scholar
|
[16] |
Xu Z, Chen L, Yang G, Huang C, Hou J, Wu Y, Li G, Hsu C, Yang Y. Vertical phase separation in poly(3-hexylthiophene): fullerene derivative blends and its advantage for inverted structure solar cells. Advanced Functional Materials, 2009, 19(8): 1227–1234
CrossRef
Google scholar
|
[17] |
Norrman K, Gevorgyan S A, Krebs F C. Water-induced degradation of polymer solar cells studied by H218O labeling. ACS Applied Materials & Interfaces, 2009, 1(1): 102–112
CrossRef
Pubmed
Google scholar
|
[18] |
Lira-Cantu M, Norrman K, Andreasen J, Krebs F. Oxygen release and exchange in niobium oxide MEHPPV hybrid solar cells. Chemistry of Materials, 2006, 18(24): 5684–5690
CrossRef
Google scholar
|
[19] |
Alstrup J, Jørgensen M, Medford A J, Krebs F C. Ultra fast and parsimonious materials screening for polymer solar cells using differentially pumped slot-die coating. ACS Applied Materials & Interfaces, 2010, 2(10): 2819–2827
CrossRef
Pubmed
Google scholar
|
[20] |
von Malm N, Steiger J, Schmechel R, von Seggern H. Trap engineering in organic hole transport materials. Journal of Applied Physics, 2001, 89(10): 5559–5563
CrossRef
Google scholar
|
[21] |
Schmechel R, von Seggern H. Electronic traps in organic transport layers. Physica Status Solidi, 2004, 201(6): 1215–1235
CrossRef
Google scholar
|
[22] |
Graupner W, Leditzky G, Leising G, Scherf U. Shallow and deep traps in conjugated polymers of high intrachain order. Physical Review B, 1996, 54(11): 7610–7613
CrossRef
Pubmed
Google scholar
|
[23] |
Okachi T, Nagase T, Kobayashi T, Naito H. Determination of localized-state distributions in organic light-emitting diodes by impedance spectroscopy. Applied Physics Letters, 2009, 94(4): 043301
CrossRef
Google scholar
|
[24] |
Harada K, Riede M, Leo K, Hild O R, Elliott C M. Pentacene homojunctions: electron and hole transport properties and related photovoltaic responses. Physical Review B, 2008, 77(19): 195212
CrossRef
Google scholar
|
[25] |
Lou Y, Xu M, Zhang L, Wang Z, Naka S, Okada H, Liao L. Origin of enhanced electrical and conducting properties in pentacene films doped by molybdenum trioxide. Organic Electronics, 2013, 14(10): 2698–2704
CrossRef
Google scholar
|
[26] |
Fuyuki T, Kondo H, Yamazaki T, Takahashi Y, Uraoka Y. Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence. Applied Physics Letters, 2005, 86(26): 262108
CrossRef
Google scholar
|
[27] |
Würfel P, Trupke T, Puzzer T, Schäffer E, Warta W, Glunz S. Diffusion lengths of silicon solar cells from luminescence images. Journal of Applied Physics, 2007, 101(12): 123110
CrossRef
Google scholar
|
[28] |
Breitenstein O, Bauer J, Trupke T, Bardos R. On the detection of shunts in silicon solar cells by photo-and electroluminescence imaging. Progress in Photovoltaics: Research and Applications, 2008, 16(4): 325–330
CrossRef
Google scholar
|
[29] |
Rau U. Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Physical Review B, 2007, 76(8): 085303
CrossRef
Google scholar
|
[30] |
Cravino A, Leriche P, Aleveque O, Roquet S, Roncali J. Light-emitting organic solar cells based on a 3D conjugated system with internal charge transfer. Advanced Materials, 2006, 18(22): 3033–3037
CrossRef
Google scholar
|
[31] |
Hoyer U, Wagner M, Swonke T, Bachmann J, Auer R, Osvet A, Brabec C. Electroluminescence imaging of organic photovoltaic modules. Applied Physics Letters, 2010, 97(23): 233303
CrossRef
Google scholar
|
[32] |
Tvingstedt K, Vandewal K, Gadisa A, Zhang F, Manca J, Inganäs O. Electroluminescence from charge transfer states in polymer solar cells. Journal of the American Chemical Society, 2009, 131(33): 11819–11824
CrossRef
Pubmed
Google scholar
|
[33] |
Sun J, Zhu X, Peng H, Wong M, Kwok H. Effective intermediate layers for highly efficient stacked organic light-emitting devices. Applied Physics Letters, 2005, 87(9): 093504
CrossRef
Google scholar
|
[34] |
Liao L, Klubek K P, Tang C W. High-efficiency tandem organic light-emitting diodes. Applied Physics Letters, 2004, 84(2): 167–169
CrossRef
Google scholar
|
[35] |
Kanno H, Holmes R, Sun Y, Kena-Cohen S, Forrest S. White stacked electrophosphorescent organic light-emitting devices employing MoO3 as a charge-generation layer. Advanced Materials, 2006, 18(3): 339–342
CrossRef
Google scholar
|
[36] |
Sun J, Zhu X, Peng H, Wong M, Kwok H. Bright and efficient white stacked organic light-emitting diodes. Organic Electronics, 2007, 8(4): 305–310
CrossRef
Google scholar
|
[37] |
Hamwi S, Meyer J, Kröger M, Winkler T, Witte M, Riedl T, Kahn A, Kowalsky W. The role of transition metal oxides in charge-generation layers for stacked organic light-emitting diodes. Advanced Functional Materials, 2010, 20(11): 1762–1766
CrossRef
Google scholar
|
[38] |
Tokito S, Noda K, Taga Y. Metal oxides as a hole-injecting layer for an organic electroluminescent device. Journal of Physics D, Applied Physics, 1996, 29(11): 2750–2753
CrossRef
Google scholar
|
[39] |
Murase S, Yang Y. Solution processed MoO3 interfacial layer for organic photovoltaics prepared by a facile synthesis method. Advanced Materials, 2012, 24(18): 2459–2462
CrossRef
Pubmed
Google scholar
|
[40] |
Lou Y, Xu M, Wang Z, Naka S, Okada H, Liao L. Dual roles of MoO3-doped pentacene thin films as hole-extraction and multicharge-separation functions in pentacene/C60 heterojunction organic solar cells. Applied Physics Letters, 2013, 102(11): 113305
CrossRef
Google scholar
|
[41] |
Morfa A, Rowlen K, Reilly T, Romero M, Lagemaat J. Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics. Applied Physics Letters, 2008, 92(1): 013504
CrossRef
Google scholar
|
[42] |
Xu M F, Zhu X Z, Shi X B, Liang J, Jin Y, Wang Z K, Liao L S. Plasmon resonance enhanced optical absorption in inverted polymer/fullerene solar cells with metal nanoparticle-doped solution-processable TiO2 layer. ACS Applied Materials & Interfaces, 2013, 5(8): 2935–2942
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |