Dual non-diffractive terahertz beam generators based on all-dielectric metasurface

Chunyu LIU, Yanfeng LI, Xi FENG, Xixiang ZHANG, Jiaguang HAN, Weili ZHANG

PDF(1189 KB)
PDF(1189 KB)
Front. Optoelectron. ›› 2021, Vol. 14 ›› Issue (2) : 201-210. DOI: 10.1007/s12200-020-1098-8
RESEARCH ARTICLE

Dual non-diffractive terahertz beam generators based on all-dielectric metasurface

Author information +
History +

Abstract

The applications of terahertz (THz) technology can be greatly extended using non-diffractive beams with unique field distributions and non-diffractive transmission characteristics. Here, we design and experimentally demonstrate a set of dual non-diffractive THz beam generators based on an all-dielectric metasurface. Two kinds of non-diffractive beams with dramatically opposite focusing properties, Bessel beam and abruptly autofocusing (AAF) beam, are considered. A Bessel beam with long-distance non-diffractive characteristics and an AAF beam with low energy during transmission and abruptly increased energy near the focus are generated for x- and y-polarized incident waves, respectively. These two kinds of beams are characterized and the results agree well with simulations. In addition, we show numerically that these two kinds of beams can also carry orbital angular momentum by further imposing proper angular phases in the design. We believe that these metasurface-based beam generators have great potential use in THz imaging, communications, non-destructive evaluation, and many other fields.

Graphical abstract

Keywords

terahertz (THz) wave / all-dielectric metasurface / Bessel beam / abruptly autofocusing (AAF) beam / vortex beam

Cite this article

Download citation ▾
Chunyu LIU, Yanfeng LI, Xi FENG, Xixiang ZHANG, Jiaguang HAN, Weili ZHANG. Dual non-diffractive terahertz beam generators based on all-dielectric metasurface. Front. Optoelectron., 2021, 14(2): 201‒210 https://doi.org/10.1007/s12200-020-1098-8

References

[1]
Stepanov A G, Henin S, Petit Y, Bonacina L, Kasparian J, Wolf J P. Mobile source of high-energy single-cycle terahertz pulses. Applied Physics B, Lasers and Optics, 2010, 101(1–2): 11–14
CrossRef Google scholar
[2]
Hebling J, Almási G, Kozma I, Kuhl J. Velocity matching by pulse front tilting for large area THz-pulse generation. Optics Express, 2002, 10(21): 1161–1166
CrossRef Pubmed Google scholar
[3]
Polyushkin D K, Hendry E, Stone E K, Barnes W L. THz generation from plasmonic nanoparticle arrays. Nano Letters, 2011, 11(11): 4718–4724
CrossRef Pubmed Google scholar
[4]
Lu X, Zhang X C. Balanced terahertz wave air-biased-coherent-detection. Applied Physics Letters, 2011, 98(15): 151111
CrossRef Google scholar
[5]
Tonouchi M. Cutting-edge terahertz technology. Nature Photonics, 2007, 1(2): 97–105
CrossRef Google scholar
[6]
Ferguson B, Zhang X C. Materials for terahertz science and technology. Nature Materials, 2002, 1(1): 26–33
CrossRef Pubmed Google scholar
[7]
Liu X, Fan K, Shadrivov I V, Padilla W J. Experimental realization of a terahertz all-dielectric metasurface absorber. Optics Express, 2017, 25(1): 191–201
CrossRef Pubmed Google scholar
[8]
Chen H T, Padilla W J, Zide J M, Gossard A C, Taylor A J, Averitt R D. Active terahertz metamaterial devices. Nature, 2006, 444(7119): 597–600
CrossRef Pubmed Google scholar
[9]
Liu X, Parrott E P J, Ung B S Y, Pickwell-MacPherson E. Exploiting total internal reflection geometry for efficient optical modulation of terahertz light. APL Photonics, 2016, 1(7): 076103
CrossRef Google scholar
[10]
Löffler T, Bauer T, Siebert K, Roskos H, Fitzgerald A, Czasch S. Terahertz dark-field imaging of biomedical tissue. Optics Express, 2001, 9(12): 616–621
CrossRef Pubmed Google scholar
[11]
Amenabar I, Lopez F, Mendikute A. In introductory review to THz non-destructive testing of composite mater. Journal of Infrared, Millimeter and Terahertz Waves, 2013, 34(2): 152–169
CrossRef Google scholar
[12]
Liu J, Mao L, Ku J, Peng H, Lao Z, Chen D, Yang B. Using terahertz spectroscopy to identify transgenic cottonseed oil according to physicochemical quality parameters. Optik (Stuttgart), 2017, 142: 483–488
CrossRef Google scholar
[13]
Federici J F, Moeller L. Review of terahertz and subterahertz wireless communications. Journal of Applied Physics, 2010, 107(11): 111101
CrossRef Google scholar
[14]
Durnin J, Miceli J Jr, Eberly J H. Diffraction-free beams. Physical Review Letters, 1987, 58(15): 1499–1501
CrossRef Pubmed Google scholar
[15]
Siviloglou G A, Christodoulides D N. Accelerating finite energy Airy beams. Optics Letters, 2007, 32(8): 979–981
CrossRef Pubmed Google scholar
[16]
Efremidis N K, Christodoulides D N. Abruptly autofocusing waves. Optics Letters, 2010, 35(23): 4045–4047
CrossRef Pubmed Google scholar
[17]
Cottrell D M, Davis J A, Hazard T M. Direct generation of accelerating Airy beams using a 3/2 phase-only pattern. Optics Letters, 2009, 34(17): 2634–2636
CrossRef Pubmed Google scholar
[18]
Bhuyan M K, Courvoisier F, Lacourt P A, Jacquot M, Salut R, Furfaro L, Dudley J M. High aspect ratio nanochannel machining using single shot femtosecond Bessel beams. Applied Physics Letters, 2010, 97(8): 081102
CrossRef Google scholar
[19]
Dufour P, Piché M, De Koninck Y, McCarthy N. Two-photon excitation fluorescence microscopy with a high depth of field using an axicon. Applied Optics, 2006, 45(36): 9246–9252
CrossRef Pubmed Google scholar
[20]
Arlt J, Garceschavez V, Sibbett W, Dholakia K. Optical micromanipulation using a Bessel light beam. Optics Communications, 2001, 197(4–6): 239–245
CrossRef Google scholar
[21]
Bitman A, Moshe I, Zalevsky Z. Improving depth-of field in broadband THz beams using nondiffractive Bessel beams. Optics Letters, 2012, 37(19): 4164–4166
CrossRef Pubmed Google scholar
[22]
Ok G, Choi S W, Park K H, Chun H S. Foreign object detection by sub-terahertz quasi-Bessel beam imaging. Sensors (Basel), 2013, 13(1): 71–85
CrossRef Pubmed Google scholar
[23]
Busch S F, Town G, Scheller M A, Koch M. Focus free terahertz reflection imaging and tomography with Bessel beams. Journal of Infrared, Millimeter and Terahertz Waves, 2015, 36(3): 318–326
CrossRef Google scholar
[24]
Baumgartl J, Mazilu M, Dholakia K. Optically mediated particle clearing using Airy wavepackets. Nature Photonics, 2008, 2(11): 675–678
CrossRef Google scholar
[25]
Vettenburg T, Dalgarno H I, Nylk J, Coll-Lladó C, Ferrier D E K, Čižmár T, Gunn-Moore F J, Dholakia K. Light-sheet microscopy using an Airy beam. Nature Methods, 2014, 11(5): 541–544
CrossRef Pubmed Google scholar
[26]
Mathis A, Courvoisier F, Froehly L, Furfaro L, Jacquot M, Lacourt P A, Dudley J M. Micromachining along a curve: femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams. Applied Physics Letters, 2012, 101(7): 071110
CrossRef Google scholar
[27]
Papazoglou D G, Efremidis N K, Christodoulides D N, Tzortzakis S. Observation of abruptly autofocusing waves. Optics Letters, 2011, 36(10): 1842–1844
CrossRef Pubmed Google scholar
[28]
Zhang P, Prakash J, Zhang Z, Mills M S, Efremidis N K, Christodoulides D N, Chen Z. Trapping and guiding microparticles with morphing autofocusing Airy beams. Optics Letters, 2011, 36(15): 2883–2885
CrossRef Pubmed Google scholar
[29]
Manousidaki M, Papazoglou D, Farsari M, Tzortzakis S. Abruptly autofocusing beams enable advanced multiscale photo-polymerization. Optica, 2016, 3(5): 525–530
CrossRef Google scholar
[30]
Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334(6054): 333–337
CrossRef Pubmed Google scholar
[31]
Pors A, Bozhevolnyi S I. Plasmonic metasurfaces for efficient phase control in reflection. Optics Express, 2013, 21(22): 27438–27451
CrossRef Pubmed Google scholar
[32]
Ni X, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M. Broadband light bending with plasmonic nanoantennas. Science, 2012, 335(6067): 427
CrossRef Pubmed Google scholar
[33]
Hu Y, Luo X, Chen Y, Liu Q, Li X, Wang Y, Liu N, Duan H. 3D-Integrated metasurfaces for full-colour holography. Light, Science & Applications, 2019, 8(1): 86
CrossRef Pubmed Google scholar
[34]
Zhang C, Divitt S, Fan Q, Zhu W, Agrawal A, Lu Y, Xu T, Lezec H J. Low-loss metasurface optics down to the deep ultraviolet region. Light, Science & Applications, 2020, 9(1): 55
CrossRef Pubmed Google scholar
[35]
Wen D, Yue F, Ardron M, Chen X. Multifunctional metasurface lens for imaging and Fourier transform. Scientific Reports, 2016, 6(1): 27628
CrossRef Pubmed Google scholar
[36]
Liu Z, Li Z, Liu Z, Cheng H, Liu W, Tang C, Gu C, Li J, Chen H, Chen S, Tian J. Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle. ACS Photonics, 2017, 4(8): 2061–2069
CrossRef Google scholar
[37]
Wang B, Dong F, Feng H, Yang D, Song Z, Xu L, Chu W, Gong Q, Li Y. Rochon-prism-like planar circularly polarized beam splitters based on dielectric metasurfaces. ACS Photonics, 2018, 5(5): 1660–1664
CrossRef Google scholar
[38]
Zhang C, Yue F, Wen D, Chen M, Zhang Z, Wang W, Chen X. Multichannel metasurface for simultaneous control of holograms and twisted light beams. ACS Photonics, 2017, 4(8): 1906–1912
CrossRef Google scholar
[39]
Dharmavarapu R, Hock Ng S, Eftekhari F, Juodkazis S, Bhattacharya S. MetaOptics: opensource software for designing metasurface optical element GDSII layouts. Optics Express, 2020, 28(3): 3505–3516
CrossRef Pubmed Google scholar
[40]
Mahmood N, Jeong H, Kim I, Mehmood M Q, Zubair M, Akbar A, Saleem M, Anwar M S, Tahir F A, Rho J. Twisted non-diffracting beams through all dielectric meta-axicons. Nanoscale, 2019, 11(43): 20571–20578
CrossRef Pubmed Google scholar
[41]
Akram M R, Mehmood M Q, Tauqeer T, Rana A S, Rukhlenko I D, Zhu W. Highly efficient generation of Bessel beams with polarization insensitive metasurfaces. Optics Express, 2019, 27(7): 9467–9480
CrossRef Pubmed Google scholar
[42]
Hao W, Deng M, Chen S, Chen L. High-efficiency generation of Airy beams with Huygens’ metasurface. Physical Review Applied, 2019, 11(5): 054012
CrossRef Google scholar
[43]
Yu B, Wen J, Chen L, Zhang L, Fan Y, Dai B, Kanwal S, Lei D, Zhang D. Polarization-independent highly efficient generation of Airy optical beams with dielectric metasurfaces. Photonics Research, 2020, 8(7): 1148–1154
CrossRef Google scholar
[44]
Fan Q, Zhu W, Liang Y, Huo P, Zhang C, Agrawal A, Huang K, Luo X, Lu Y, Qiu C, Lezec H J, Xu T. Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible. Nano Letters, 2019, 19(2): 1158–1165
CrossRef Pubmed Google scholar
[45]
Yue F, Wen D, Xin J, Gerardot B D, Li J, Chen X. Vector vortex beam generation with a single plasmonic metasurface. ACS Photonics, 2016, 3(9): 1558–1563
CrossRef Google scholar
[46]
Dharmavarapu R, Izumi K, Katayama I, Ng S H, Vongsvivut J, Tobin M J, Kuchmizhak A, Nishijima Y, Bhattacharya S, Juodkazis S. Dielectric cross-shaped-resonator-based metasurface for vortex beam generation at mid-IR and THz wavelengths. Nanophotonics, 2019, 8(7): 1263–1270
CrossRef Google scholar
[47]
He J, Dong T, Chi B, Zhang Y. Metasurfaces for terahertz wavefront modulation: a review. Journal of Infrared, Millimeter and Terahertz Waves, 2020, 41(6): 607–631
CrossRef Google scholar
[48]
Guo J, Wang T, Zhao H, Wang X, Feng S, Han P, Sun W, Ye J, Situ G, Chen H, Zhang Y. Reconfigurable terahertz metasurface pure phase holograms. Advanced Optical Materials, 2019, 7(10): 1801696
CrossRef Google scholar
[49]
Liu W, Hu B, Huang Z, Guan H, Li H, Wang X, Zhang Y, Yin H, Xiong X, Liu J, Wang Y. Graphene-enabled electrically controlled terahertz meta-lens. Photonics Research, 2018, 6(7): 703–708
CrossRef Google scholar
[50]
Zhao H, Quan B, Wang X, Gu C, Li J, Zhang Y. Demonstration of orbital angular momentum multiplexing and demultiplexing based on a metasurface in the terahertz band. ACS Photonics, 2018, 5(5): 1726–1732
CrossRef Google scholar
[51]
Genevet P, Capasso F, Aieta F, Khorasaninejad M, Devlin R. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica, 2017, 4(1): 139–152
CrossRef Google scholar
[52]
Staude I, Schilling J. Metamaterial-inspired silicon nanophotonics. Nature Photonics, 2017, 11(5): 274–284
CrossRef Google scholar
[53]
Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nature Nanotechnology, 2015, 10(11): 937–943
CrossRef Pubmed Google scholar
[54]
Chen W T, Khorasaninejad M, Zhu A Y, Oh J, Devlin R C, Zaidi A, Capasso F. Generation of wavelength-independent subwavelength Bessel beams using metasurfaces. Light, Science & Applications, 2017, 6(5): e16259
CrossRef Pubmed Google scholar
[55]
Chremmos I, Efremidis N K, Christodoulides D N. Pre-engineered abruptly autofocusing beams. Optics Letters, 2011, 36(10): 1890–1892
CrossRef Pubmed Google scholar
[56]
Zhao Z, Xie C, Ni D, Zhang Y, Li Y, Courvoisier F, Hu M. Scaling the abruptly autofocusing beams in the direct-space. Optics Express, 2017, 25(24): 30598–30605
CrossRef Pubmed Google scholar
[57]
Wang Q, Xu Q, Zhang X, Tian C, Xu Y, Gu J, Tian Z, Ouyang C, Zhang X, Han J, Zhang W. All-dielectric meta-holograms with holographic images transforming longitudinally. ACS Photonics, 2018, 5(2): 599–606
CrossRef Google scholar
[58]
Xu Y, Zhang X, Tian Z, Gu J, Ouyang C, Li Y, Han J, Zhang W. Mapping the near-field propagation of surface plasmons on terahertz metasurfaces. Applied Physics Letters, 2015, 107(2): 021105
CrossRef Google scholar
[59]
Ou K, Li G, Li T, Yang H, Yu F, Chen J, Zhao Z, Cao G, Chen X, Lu W. High efficiency focusing vortex generation and detection with polarization-insensitive dielectric metasurfaces. Nanoscale, 2018, 10(40): 19154–19161
CrossRef Pubmed Google scholar
[60]
Yang Q, Chen X, Xu Q, Tian C, Xu Y, Cong L, Zhang X, Li Y, Zhang C, Zhang X, Han J, Zhang W. Broadband terahertz rotator with an all-dielectric metasurface. Photonics Research, 2018, 6(11): 1056–1061
CrossRef Google scholar
[61]
Zhang D, Lin Z, Liu J, Zhang J, Zhang Z, Hao Z, Wang X. Broadband high-efficiency multiple vortex beams generated by an interleaved geometric-phase multifunctional metasurface. Optical Materials Express, 2020, 10(7): 1531–1544
CrossRef Google scholar

Acknowledgements

This work was funded by the National Key Research and Development Program of China (No. 2017YFA0701004), the National Natural Science Foundation of China (Grant Nos. 61935015, 61875150, 61605143, 61735012, 61722509, and 61871212), Tianjin Municipal Fund for Distinguished Young Scholars (No. 18JCJQJC45600), and King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) (No. OSR-2016-CRG5-2950).

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(1189 KB)

Accesses

Citations

Detail

Sections
Recommended

/