Line-field confocal optical coherence tomography for three-dimensional skin imaging

Jonas OGIEN, Anthony DAURES, Maxime CAZALAS, Jean-Luc PERROT, Arnaud DUBOIS

PDF(1567 KB)
PDF(1567 KB)
Front. Optoelectron. ›› 2020, Vol. 13 ›› Issue (4) : 381-392. DOI: 10.1007/s12200-020-1096-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Line-field confocal optical coherence tomography for three-dimensional skin imaging

Author information +
History +

Abstract

This paper reports on the latest advances in line-field confocal optical coherence tomography (LC-OCT), a recently invented imaging technology that now allows the generation of either horizontal (x× y) section images at an adjustable depth or vertical (x× z) section images at an adjustable lateral position, as well as three-dimensional images. For both two-dimensional imaging modes, images are acquired in real-time, with real-time control of the depth and lateral positions. Three-dimensional (x× y× z) images are acquired from a stack of horizontal section images. The device is in the form of a portable probe. The handle of the probe has a button and a scroll wheel allowing the user to control the imaging modes. Using a supercontinuum laser as a broadband light source and a high numerical microscope objective, an isotropic spatial resolution of ~1 mm is achieved. The field of view of the three-dimensional images is 1.2 mm × 0.5 mm × 0.5 mm (x× y× z). Images of skin tissues are presented to demonstrate the potential of the technology in dermatology.

Graphical abstract

Keywords

optical coherence tomography (OCT) / microscopy / three-dimensional imaging / dermatology

Cite this article

Download citation ▾
Jonas OGIEN, Anthony DAURES, Maxime CAZALAS, Jean-Luc PERROT, Arnaud DUBOIS. Line-field confocal optical coherence tomography for three-dimensional skin imaging. Front. Optoelectron., 2020, 13(4): 381‒392 https://doi.org/10.1007/s12200-020-1096-x

References

[1]
Fercher A F. Optical coherence tomography. Journal of Biomedical Optics, 1996, 1(2): 157–173
CrossRef Pubmed Google scholar
[2]
Podoleanu A G. Optical coherence tomography. Journal of Microscopy, 2012, 247(3): 209–219
CrossRef Pubmed Google scholar
[3]
Zysk A M, Nguyen F T, Oldenburg A L, Marks D L, Boppart S A. Optical coherence tomography: a review of clinical development from bench to bedside. Journal of Biomedical Optics, 2007, 12(5): 051403
CrossRef Pubmed Google scholar
[4]
Schuman J S, Puliafito C A, Fujimoto J G, Duker J S. Optical Coherence Tomography of Ocular Diseases. 3rd ed. New Jersey: Slack Inc., 2013
[5]
Bezerra H G, Costa M A, Guagliumi G, Rollins A M, Simon D I. Intracoronary optical coherence tomography: a comprehensive review clinical and research applications. JACC: Cardiovascular Interventions, 2009, 2(11): 1035–1046
Pubmed
[6]
Adler D C, Chen Y, Huber R, Schmitt J, Connolly J, Fujimoto J G. Three-dimensional endomicroscopy using optical coherence tomography. Nature Photonics, 2007, 1(12): 709–716
CrossRef Google scholar
[7]
Yu X, Ding Q, Hu C, Mu G, Deng Y, Luo Y, Yuan Z, Yu H, Liu L. Evaluating micro-optical coherence tomography as a feasible imaging tool for pancreatic disease diagnosis. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(1): 1–8
CrossRef Google scholar
[8]
Men J, Huang Y, Solanki J, Zeng X, Alex A, Jerwick J, Zhang Z, Tanzi R E, Li A, Zhou C. Optical coherence tomography for brain imaging and developmental biology. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(4): 120–132
CrossRef Pubmed Google scholar
[9]
Fan Y, Xia Y, Zhang X, Sun Y, Tang J, Zhang L, Liao H. Optical coherence tomography for precision brain imaging, neurosurgical guidance and minimally invasive theranostics. Bioscience Trends, 2018, 12(1): 12–23
CrossRef Pubmed Google scholar
[10]
Levine A, Wang K, Markowitz O. Optical coherence tomography in the diagnosis of skin cancer. Dermatologic Clinics, 2017, 35(4): 465–488
CrossRef Pubmed Google scholar
[11]
Drexler W, Morgner U, Kärtner F X, Pitris C, Boppart S A, Li X D, Ippen E P, Fujimoto J G. In vivo ultrahigh-resolution optical coherence tomography. Optics Letters, 1999, 24(17): 1221–1223
CrossRef Pubmed Google scholar
[12]
Povazay B, Bizheva K, Unterhuber A, Hermann B, Sattmann H, Fercher A F, Drexler W, Apolonski A, Wadsworth W J, Knight J C, Russell P S J, Vetterlein M, Scherzer E. Submicrometer axial resolution optical coherence tomography. Optics Letters, 2002, 27(20): 1800–1802
CrossRef Pubmed Google scholar
[13]
Wang Y, Zhao Y, Nelson J S, Chen Z, Windeler R S. Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber. Optics Letters, 2003, 28(3): 182–184
CrossRef Pubmed Google scholar
[14]
Aguirre A, Nishizawa N, Fujimoto J, Seitz W, Lederer M, Kopf D. Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm. Optics Express, 2006, 14(3): 1145–1160
CrossRef Pubmed Google scholar
[15]
Leitgeb R A. En face optical coherence tomography: a technology review. Biomedical Optics Express, 2019, 10(5): 2177–2201
CrossRef Pubmed Google scholar
[16]
Choma M, Sarunic M, Yang C, Izatt J. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Optics Express, 2003, 11(18): 2183–2189
CrossRef Pubmed Google scholar
[17]
Lee K S, Rolland J P. Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range. Optics Letters, 2008, 33(15): 1696–1698
CrossRef Pubmed Google scholar
[18]
Leitgeb R A, Villiger M, Bachmann A H, Steinmann L, Lasser T. Extended focus depth for Fourier domain optical coherence microscopy. Optics Letters, 2006, 31(16): 2450–2452
CrossRef Pubmed Google scholar
[19]
Tamborski S, Lyu H C, Dolezyczek H, Malinowska M, Wilczynski G, Szlag D, Lasser T, Wojtkowski M, Szkulmowski M. Extended-focus optical coherence microscopy for high-resolution imaging of the murine brain. Biomedical Optics Express, 2016, 7(11): 4400–4414
CrossRef Pubmed Google scholar
[20]
Liu L, Chu K K, Houser G H, Diephuis B J, Li Y, Wilsterman E J, Shastry S, Dierksen G, Birket S E, Mazur M, Byan-Parker S, Grizzle W E, Sorscher E J, Rowe S M, Tearney G J. Method for quantitative study of airway functional microanatomy using micro-optical coherence tomography. PLoS One, 2013, 8(1): e54473
CrossRef Pubmed Google scholar
[21]
Liu L, Liu C, Howe W C, Sheppard C J R, Chen N. Binary-phase spatial filter for real-time swept-source optical coherence microscopy. Optics Letters, 2007, 32(16): 2375–2377
CrossRef Pubmed Google scholar
[22]
Yin B, Chu K K, Liang C P, Singh K, Reddy R, Tearney G J. μOCT imaging using depth of focus extension by self-imaging wavefront division in a common-path fiber optic probe. Optics Express, 2016, 24(5): 5555–5564
CrossRef Pubmed Google scholar
[23]
Ralston T S, Marks D L, Carney P S, Boppart S A. Interferometric synthetic aperture microscopy. Nature Physics, 2007, 3(2): 129–134
CrossRef Pubmed Google scholar
[24]
Coquoz S, Bouwens A, Marchand P J, Extermann J, Lasser T. Interferometric synthetic aperture microscopy for extended focus optical coherence microscopy. Optics Express, 2017, 25(24): 30807–30819
CrossRef Pubmed Google scholar
[25]
Yu L, Rao B, Zhang J, Su J, Wang Q, Guo S, Chen Z. Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method. Optics Express, 2007, 15(12): 7634–7641
CrossRef Pubmed Google scholar
[26]
Fechtig D J, Kumar A, Drexler W, Leitgeb R A. Full range line-field parallel swept source imaging utilizing digital refocusing. Journal of Modern Optics, 2015, 62(21): 1801–1807
CrossRef Google scholar
[27]
Mo J, de Groot M, de Boer J F. Focus-extension by depth-encoded synthetic aperture in optical coherence tomography. Optics Express, 2013, 21(8): 10048–10061
CrossRef Pubmed Google scholar
[28]
Holmes J. Theory and applications of multi-beam OCT. In: Proceedings of the 1st Canterbury Workshop on Optical Coherence Tomography and Adaptive Optics. Canterbury: SPIE, 2008
[29]
Holmes J, Hattersley S, Stone N, Bazant-Hegemark F, Barr H. Multi-channel fourier domain OCT system with superior lateral resolution for biomedical applications. In: Proceedings of Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XII. San Jose: SPIE, 2008
[30]
Yi L, Sun L, Ding W. Multifocal spectral-domain optical coherence tomography based on Bessel beam for extended imaging depth. Journal of Biomedical Optics, 2017, 22(10): 1–8
CrossRef Pubmed Google scholar
[31]
Li J, Luo Y, Wang X, Wang N, Bo E, Chen S, Chen S, Chen S, Tsai M T, Liu L. Extending the depth of focus of fiber-optic optical coherence tomography using a chromatic dual-focus design. Applied Optics, 2018, 57(21): 6040–6046
CrossRef Pubmed Google scholar
[32]
Nam A S, Ren J, Bouma B E, Vakoc B J. Demonstration of triband multi-focal imaging with optical coherence tomography. Applied Sciences (Basel, Switzerland), 2018, 8(12): 2395
CrossRef Pubmed Google scholar
[33]
Huber R, Wojtkowski M, Fujimoto J G, Jiang J Y, Cable A E. Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm. Optics Express, 2005, 13(26): 10523–10538
CrossRef Pubmed Google scholar
[34]
Rolland J P, Meemon P, Murali S, Thompson K P, Lee K S. Gabor-based fusion technique for optical coherence microscopy. Optics Express, 2010, 18(4): 3632–3642
CrossRef Pubmed Google scholar
[35]
Lee K S, Thompson K P, Meemon P, Rolland J P. Cellular resolution optical coherence microscopy with high acquisition speed for in-vivo human skin volumetric imaging. Optics Letters, 2011, 36(12): 2221–2223
CrossRef Pubmed Google scholar
[36]
Liu S, Mulligan J A, Adie S G. Volumetric optical coherence microscopy with a high space-bandwidth-time product enabled by hybrid adaptive optics. Biomedical Optics Express, 2018, 9(7): 3137–3152
CrossRef Pubmed Google scholar
[37]
Schmitt J M, Lee S L, Yung K M. An optical coherence microscope with enhanced resolving power in thick tissue. Optics Communications, 1997, 142(4–6): 203–207
CrossRef Google scholar
[38]
Lexer F, Hitzenberger C K, Drexler W, Molebny S, Sattmann H, Sticker M, Fercher A F. Dynamic coherent focus OCT with depth-independent transversal resolution. Journal of Modern Optics, 1999, 46(3): 541–553
CrossRef Google scholar
[39]
Qi P A, Himmer P A, Gordon M L, Yang V X D, Dickensheets D L, Vitkin I A. Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror. Optics Communications, 2004, 232(1–6): 123–128
CrossRef Google scholar
[40]
Divetia A, Hsieh T H, Zhang J, Chen Z, Bachman M, Li G P. Dynamically focused optical coherence tomography for endoscopic applications. Applied Physics Letters, 2005, 86(10): 103902
CrossRef Google scholar
[41]
Yang V X D, Munce N, Pekar J, Gordon M L, Lo S, Marcon N E, Wilson B C, Vitkin I A. Micromachined array tip for multifocus fiber-based optical coherence tomography. Optics Letters, 2004, 29(15): 1754–1756
CrossRef Pubmed Google scholar
[42]
Dubois A, Levecq O, Azimani H, Davis A, Ogien J, Siret D, Barut A. Line-field confocal time-domain optical coherence tomography with dynamic focusing. Optics Express, 2018, 26(26): 33534–33542
CrossRef Pubmed Google scholar
[43]
Dubois A, Levecq O, Azimani H, Siret D, Barut A, Suppa M, Del Marmol V, Malvehy J, Cinotti E, Rubegni P, Perrot J L. Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors. Journal of Biomedical Optics, 2018, 23(10): 1–9
CrossRef Pubmed Google scholar
[44]
Ogien J, Siret D, Levecq O, Azimani H, David A, Xue W, Perrot J L, Dubois A. Line-field confocal optical coherence tomography. In: Proceedings of Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII. San Francisco: SPIE, 2019
[45]
Davis A, Levecq O, Azimani H, Siret D, Dubois A. Simultaneous dual-band line-field confocal optical coherence tomography: application to skin imaging. Biomedical Optics Express, 2019, 10(2): 694–706
CrossRef Pubmed Google scholar
[46]
Dubois A, Xue W, Levecq O, Bulkin P, Coutrot A L, Ogien J. Mirau-based line-field confocal optical coherence tomography. Optics Express, 2020, 28(6): 7918–7927
CrossRef Pubmed Google scholar
[47]
Ogien J, Levecq O, Azimani H, Dubois A. Dual-mode line-field confocal optical coherence tomography for ultrahigh-resolution vertical and horizontal section imaging of human skin in vivo. Biomedical Optics Express, 2020, 11(3): 1327–1335
CrossRef Pubmed Google scholar
[48]
Larkin K G. Efficient nonlinear algorithm for envelope detection in white light interferometry. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 1996, 13(4): 832–843
CrossRef Google scholar
[49]
Cazalas M, Levecq O, Azimani H, Siret D, Barut A, Suppa M, del Marmol V, Malvehy J, Cinotti E, Rubegni P, Perrot J L, Dubois A. Skin lesion imaging with line-field confocal optical coherence tomography. In: Proceedings of Photonics in Dermatology and Plastic Surgery 2019. San Francisco: SPIE, 2019
[50]
Dejonckheere G, Suppa M, Marmol V, Meyer T, Stockfleth E. The actinic dysplasia syndrome-diagnostic approaches defining a new concept in field carcinogenesis with multiple cSCC. Journal of the European Academy of Dermatology and Venereology, 2019, 33(S8): 16–20
CrossRef Pubmed Google scholar
[51]
Pedrazzani M, Breugnot J, Rouaud-Tinguely P, Cazalas M, Davis A, Bordes S, Dubois A, Closs B. Comparison of line-field confocal optical coherence tomography images with histological sections: validation of a new method for in vivo and non-invasive quantification of superficial dermis thickness. Skin Research and Technology, 2020, 26(3): 398–404
CrossRef Pubmed Google scholar
[52]
Ogien J, Levecq O, Cazalas M, Suppa M, del Marmol V, Malvehy J, Cinotti E, Rubegni P, Perrot J L, Dubois A. Handheld line-field confocal optical coherence tomography for dermatology. In: Proceedings of Photonics in Dermatology and Plastic Surgery 2020. San Francisco: SPIE, 2020
CrossRef Google scholar
[53]
Monnier J, Tognetti L, Miyamoto M, Suppa M, Cinotti E, Fontaine M, Perez J, Orte Cano C, Yélamos O, Puig S, Dubois A, Rubegni P, Marmol V, Malvehy J, Perrot J L. In vivo characterization of healthy human skin with a novel, non-invasive imaging technique: line-field confocal optical coherence tomography. Journal of the European Academy of Dermatology and Venereology, 2020, doi:10.1111/jdv.16857
Pubmed
[54]
Ruini C, Sattler E. Line-field confocal optical coherence tomography: the golden goose? Aktuelle Dermatologie, 2020, 46: 148–151
[55]
Tognetti L, Rizzo A, Fiorani D, Cinotti E, Perrot J L, Rubegni P. New findings in non-invasive imaging of aquagenic keratoderma: Line-field optical coherence tomography, dermoscopy and reflectance confocal microscopy. Skin Research and Technology, 2020, doi:10.1111/srt.12882
Pubmed
[56]
Ruini C, Schuh S, Sattler E, Welzel J. Line-field confocal optical coherence tomography–practical applications in dermatology and comparison with established imaging methods. Skin Research and Technology, 2020, doi:10.1111/srt.12949
Pubmed
[57]
Tognetti L, Fiorani D, Cinotti E, Rubegni P. Tridimensional skin imaging in aquagenic keratoderma: virtual histology by line-field confocal optical coherence tomography. International Journal of Dermatology, 2020, doi:10.1111/ijd.15169
Pubmed
[58]
Tognetti L, Fiorani D, Suppa M, Cinotti E, Fontaine M, Marmol V D, Rubegni P, Perrot J L. Examination of circumscribed palmar hypokeratosis with line-field confocal optical coherence tomography: dermoscopic, ultrasonographic and histopathologic correlates. Indian Journal of Dermatology, Venereology and Leprology, 2020, 86(2): 206–208
CrossRef Pubmed Google scholar
[59]
Tognetti L, Carraro A, Lamberti A, Cinotti E, Suppa M, Luc Perrot J, Rubegni P. Kaposi sarcoma of the glans: new findings by line field confocal optical coherence tomography examination. Skin Research and Technology, 2020, doi:10.1111/srt.12938
Pubmed
[60]
Ruini C, Schuh S, Pellacani G, French L, Welzel J, Sattler E. In vivo imaging of Sarcoptes scabiei infestation using line-field confocal optical coherence tomography. Journal of the European Academy of Dermatology and Venereology, 2020, doi:10.1111/jdv.16671
Pubmed
[61]
Rennie D. Nailfold dermatoscopy in general practice. Australian Family Physician, 2015, 44(11): 809–812
Pubmed
[62]
Xue W, Ogien J, Levecq O, Dubois A. Line-field confocal optical coherence tomography based on a Mirau interferometer. In: Proceedings of Unconventional Optical Imaging II. SPIE, 2020
CrossRef Google scholar

Acknowledgements

The authors thank the whole team of engineers at DAMAE Medical, especially Olivier Levecq, Hicham Azimani, Emmanuel Cohen and Romain Allemand, for their work on the technology and design of the LC-OCT prototype presented in this paper. They also thank Amyn Kassara for providing the segmentation of the three-dimensional images. They are also grateful to Anaïs Barut and David Siret as directors and managers of DAMAE Medical.

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(1567 KB)

Accesses

Citations

Detail

Sections
Recommended

/