Nonlinear effects in topological materials

Jack W. ZUBER, Chao ZHANG

PDF(1045 KB)
PDF(1045 KB)
Front. Optoelectron. ›› 2021, Vol. 14 ›› Issue (1) : 99-109. DOI: 10.1007/s12200-020-1088-x
REVIEW ARTICLE
REVIEW ARTICLE

Nonlinear effects in topological materials

Author information +
History +

Abstract

Materials, where charge carriers have a linear energy dispersion, usually exhibit a strong nonlinear optical response in the absence of disorder scattering. This nonlinear response is particularly interesting in the terahertz frequency region. We present a theoretical and numerical investigation of charge transport and nonlinear effects, such as the high harmonic generation in topological materials including Weyl semimetals (WSMs) and a-T3 systems. The nonlinear optical conductivity is calculated both semi-classically using the velocity operator and quantum mechanically using the density matrix. We show that the nonlinear response is strongly dependent on temperature and topological parameters, such as the Weyl point (WP) separation b and Berry phase φB. A finite spectral gap opening can further modify the nonlinear effects. Under certain parameters, universal behaviors of both the linear and nonlinear response can be observed. Coupled with experimentally accessible critical field values of 104 105V/m, our results provide useful information on developing nonlinear optoelectronic devices based on topological materials.

Graphical abstract

Keywords

terahertz / nonlinear effects / topological materials / Weyl semimetals (WSMs) / a-T3 systems

Cite this article

Download citation ▾
Jack W. ZUBER, Chao ZHANG. Nonlinear effects in topological materials. Front. Optoelectron., 2021, 14(1): 99‒109 https://doi.org/10.1007/s12200-020-1088-x

References

[1]
Ando Y. Topological insulator materials. Journal of the Physical Society of Japan, 2013, 82(10): 102001
CrossRef Google scholar
[2]
Otsuji T, Popov V, Ryzhii V. Active graphene plasmonics for terahertz device applications. Journal of Physics D, Applied Physics, 2014, 47(9): 094006
CrossRef Google scholar
[3]
Bansil A, Lin H, Das T. Topological band theory. Reviews of Modern Physics, 2016, 88(2): 021004
CrossRef Google scholar
[4]
Qi X L, Zhang S C. Topological insulators and superconductors. Reviews of Modern Physics, 2011, 83(4): 1057–1110
CrossRef Google scholar
[5]
Hasan M Z, Kane C L. Topological insulators. Reviews of Modern Physics, 2010, 82(4): 3045–3067
CrossRef Google scholar
[6]
Reddy D, Register L F, Carpenter G D, Banerjee S K. Graphene field-effect transistors. Journal of Physics D, Applied Physics, 2011, 44(31): 313001
CrossRef Google scholar
[7]
Sanderson M, Huang S, Bao Q, Zhang C. Optical conductivity of a commensurate graphene-topological insulator heterostructure. Journal of Physics D, Applied Physics, 2017, 50(38): 385301
CrossRef Google scholar
[8]
Wehling T, Black-Schaffer A M, Balatsky A V. Dirac materials. Advances in Physics, 2014, 63(1): 1–76
CrossRef Google scholar
[9]
Huang S C, Sanderson M, Zhang Y, Zhang C. High efficiency and non-Richardson thermionics in three dimensional Dirac materials. Applied Physics Letters, 2017, 111(18): 183902
CrossRef Google scholar
[10]
Lundgren R, Fiete G A. Electronic cooling in Weyl and Dirac semimetals. Physical Review B: Condensed Matter and Materials Physics, 2015, 92(12): 125139
CrossRef Google scholar
[11]
Burkov A A, Balents L. Weyl semimetal in a topological insulator multilayer. Physical Review Letters, 2011, 107(12): 127205
CrossRef Pubmed Google scholar
[12]
Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C, Sankar R, Chang G, Yuan Z, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B, Bansil A, Chou F, Shibayev P P, Lin H, Jia S, Hasan M Z. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science, 2015, 349(6248): 613–617
CrossRef Pubmed Google scholar
[13]
Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T, Ding H. Experimental discovery of Weyl semimetal TaAs. Physical Review X, 2015, 5(3): 031013
CrossRef Google scholar
[14]
Lu L, Wang Z, Ye D, Ran L, Fu L, Joannopoulos J D, Soljačić M. Experimental observation of Weyl points. Science, 2015, 349(6248): 622–624
CrossRef Pubmed Google scholar
[15]
Xu S Y, Alidoust N, Belopolski I, Yuan Z, Bian G, Chang T R, Zheng H, Strocov V N, Sanchez D S, Chang G, Zhang C, Mou D, Wu Y, Huang L, Lee C C, Huang S M, Wang B K, Bansil A, Jeng H T, Neupert T, Kaminski A, Lin H, Jia S, Zahid Hasan M. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide. Nature Physics, 2015, 11(9): 748–754
CrossRef Google scholar
[16]
Ouyang T, Xiao H, Tang C, Hu M, Zhong J. Anisotropic thermal transport in Weyl semimetal TaAs: a first principles calculation. Physical Chemistry Chemical Physics, 2016, 18(25): 16709
[17]
Meng T, Balents L. Weyl superconductors. Physical Review B: Condensed Matter and Materials Physics, 2012, 86(5): 054504
CrossRef Google scholar
[18]
Hosur P, Parameswaran S A, Vishwanath A. Charge transport in Weyl semimetals. Physical Review Letters, 2012, 108(4): 046602
CrossRef Pubmed Google scholar
[19]
Goswami P, Tewari S. Axionic field theory of (3+1)-dimensional Weyl semimetals. Physical Review B: Condensed Matter and Materials Physics, 2013, 88(24): 245107
CrossRef Google scholar
[20]
Vazifeh M M, Franz M. Electromagnetic response of Weyl semimetals. Physical Review Letters, 2013, 111(2): 027201
CrossRef Pubmed Google scholar
[21]
Armitage N P, Mele E J, Vishwanath A. Weyl and Dirac semimetals in three-dimensional solids. Reviews of Modern Physics, 2018, 90(1): 015001
CrossRef Google scholar
[22]
Ashby P E, Carbotte J P. Magneto-optical conductivity of Weyl semimetals. Physical Review B: Condensed Matter and Materials Physics, 2013, 87(24): 245131
CrossRef Google scholar
[23]
Fuchs J N. Dirac fermions in graphene and analogues: magnetic field and topological properties. 2013, arXiv:1306.0380
[24]
Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K. The electronic properties of graphene. Reviews of Modern Physics, 2009, 81(1): 109–162
CrossRef Google scholar
[25]
Peres N M R. The transport properties of graphene: an introduction. Reviews of Modern Physics, 2010, 82(3): 2673–2700
CrossRef Google scholar
[26]
Sarma S D, Adam S, Hwang E H, Rossi E. Electronic transport in two-dimensional graphene. Reviews of Modern Physics, 2011, 83(2): 407–470
CrossRef Google scholar
[27]
Baireuther P S. Universiteit Leiden, (Doctoral dissertation). 2017
[28]
Bell J S, Jackiw R. A PCAC puzzle: π0→gg in the s-model. Il Nuovo Cimento, 1969, 60(1): 47–61
CrossRef Google scholar
[29]
Adler S L. Axial-vector vertex in spinor electrodynamics. Physical Review, 1969, 177(5): 2426–2438
CrossRef Google scholar
[30]
Son D T, Spivak B Z. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Physical Review B: Condensed Matter and Materials Physics, 2013, 88(10): 104412
CrossRef Google scholar
[31]
Landsteiner K. Anomalous transport of Weyl fermions in Weyl semimetals. Physical Review B: Condensed Matter and Materials Physics, 2014, 89(7): 075124
CrossRef Google scholar
[32]
Shekhar C, Nayak A K, Sun Y, Schmidt M, Nicklas M, Leermakers I, Zeitler U, Skourski Y, Wosnitza J, Liu Z, Chen Y, Schnelle W, Borrmann H, Grin Y, Felser C, Yan B. Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP. Nature Physics, 2015, 11(8): 645–649
CrossRef Google scholar
[33]
Wang F, Ran Y. Nearly flat band with Chern number C = 2 on the dice lattice. Physical Review B: Condensed Matter and Materials Physics, 2011, 84(24): 241103
CrossRef Google scholar
[34]
Bercioux D, Urban D F, Grabert H, Häusler H. Massless Dirac-Weyl fermions in a T3 optical lattice. Physical Review A, 2009, 80(6): 063603
CrossRef Google scholar
[35]
Liu Z, Wang Z F, Mei J W, Wu Y S, Liu F. Flat Chern band in a two-dimensional organometallic framework. Physical Review Letters, 2013, 110(10): 106804
CrossRef Pubmed Google scholar
[36]
Yamada M G, Soejima T, Tsuji N, Hirai D, Dincă M, Aoki H. First-principles design of a half-filled flat band of the kagome lattice in two-dimensional metal-organic frameworks. Physical Review B: Condensed Matter and Materials Physics, 2016, 94(8): 081102
CrossRef Google scholar
[37]
Su N, Jiang W, Wang Z, Liu F. Prediction of large gap flat Chern band in a two-dimensional metal-organic framework. Applied Physics Letters, 2018, 112(3): 033301
CrossRef Google scholar
[38]
Neupert T, Santos L, Chamon C, Mudry C. Fractional quantum Hall states at zero magnetic field. Physical Review Letters, 2011, 106(23): 236804
CrossRef Pubmed Google scholar
[39]
Malcolm J D, Nicol E J. Analytic evaluation of Kane fermion magneto-optics in two and three dimensions. Physical Review B: Condensed Matter and Materials Physics, 2016, 94(22): 224305
CrossRef Google scholar
[40]
Häusler W. Flat-band conductivity properties at long-range Coulomb interactions. Physical Review B: Condensed Matter and Materials Physics, 2015, 91(4): 041102
CrossRef Google scholar
[41]
Du L, Zhou X, Fiete G A. Quadratic band touching points and flat bands in two-dimensional topological Floquet systems. Physical Review B: Condensed Matter and Materials Physics, 2017, 95(3): 035136
CrossRef Google scholar
[42]
Urban D F, Bercioux D, Wimmer W, Häusler W. Barrier transmission of Dirac-like pseudospin-one particles. Physical Review B: Condensed Matter and Materials Physics, 2011, 84(11): 115136
CrossRef Google scholar
[43]
Shen R, Shao L B, Wang B, Xing D Y. Single Dirac cone with a flat band touching on line-centered-square optical lattices. Physical Review B: Condensed Matter and Materials Physics, 2010, 81(4): 041410
CrossRef Google scholar
[44]
Illes E, Nicol E J. Klein tunneling in the α-T3 model. Physical Review B: Condensed Matter and Materials Physics, 2017, 95(23): 235432
CrossRef Google scholar
[45]
Louvet T, Delplace P, Fedorenko A A, Carpentier D. On the origin of minimal conductivity at a band crossing. Physical Review B: Condensed Matter and Materials Physics, 2015, 92(15): 155116
CrossRef Google scholar
[46]
Illes E, Nicol E J. Magnetic properties of the α-T3 model: magneto-optical conductivity and the Hofstadter butterfly. Physical Review B: Condensed Matter and Materials Physics, 2016, 94(12): 125435
CrossRef Google scholar
[47]
Islam S K F, Dutta P. Valley-polarized magnetoconductivity and particle-hole symmetry breaking in a periodically modulated α-T3 lattice. Physical Review B: Condensed Matter and Materials Physics, 2017, 96(4): 045418
CrossRef Google scholar
[48]
Shareef S, Ang Y S, Zhang C. Room-temperature strong terahertz photon mixing in graphene. Journal of the Optical Society of America B, Optical Physics, 2012, 29(3): 274
CrossRef Google scholar
[49]
Wright A R, Xu X G, Cao J C, Zhang C. Strong nonlinear optical response of graphene in the terahertz regime. Applied Physics Letters, 2009, 95(7): 072101
CrossRef Google scholar
[50]
Ang Y S, Sultan S, Zhang C. Nonlinear optical spectrum of bilayer graphene in the terahertz regime. Applied Physics Letters, 2010, 97(24): 243110
CrossRef Google scholar
[51]
Ang Y S, Zhang C. Enhanced optical conductance in graphene superlattice due to anisotropic band dispersion. Journal of Physics D, Applied Physics, 2012, 45(39): 395303
CrossRef Google scholar
[52]
Mikhailov S A. Non-linear electromagnetic response of graphene. Europhysics Letters, 2007, 79(2): 27002
CrossRef Google scholar
[53]
Gong S, Zhao T, Sanderson M, Hu M, Zhong R, Chen X, Zhang P, Zhang C, Liu S. Transformation of surface plasmon polaritons to radiation in graphene in terahertz regime. Applied Physics Letters, 2015, 106(22): 223107
CrossRef Google scholar
[54]
Sanderson M, Ang Y S, Gong S, Zhao T, Hu M, Zhong R, Chen X, Zhang P, Zhang C, Liu S. Optical bistability induced by nonlinear surface plasmon polaritons in graphene in terahertz regime. Applied Physics Letters, 2015, 107(20): 203113
CrossRef Google scholar
[55]
Zuber J W, Zhao T, Gong S, Hu M, Zhong R B, Zhang C, Liu S G. Tunable strong photo-mixing in Weyl semimetals. Physical Review B: Condensed Matter and Materials Physics, 2020, 101(8): 085307
CrossRef Google scholar
[56]
Zhu C, Wang F, Meng Y, Yuan X, Xiu F, Luo H, Wang Y, Li J, Lv X, He L, Xu Y, Liu J, Zhang C, Shi Y, Zhang R, Zhu S. A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions. Nature Communications, 2017, 8(1): 14111
CrossRef Pubmed Google scholar
[57]
Huang S, Sanderson M, Tian J, Chen Q, Wang F, Zhang C. Hot carrier relaxation in three dimensional gapped Dirac semi-metals. Journal of Physics D, Applied Physics, 2018, 51(1): 015101
CrossRef Google scholar
[58]
Hwang C, Siegel D A, Mo S K, Regan W, Ismach A, Zhang Y, Zettl A, Lanzara A. Fermi velocity engineering in graphene by substrate modification. Scientific Reports, 2012, 2(1): 590
CrossRef Google scholar
[59]
Illes E, Carbotte J P, Nicol E J. Hall quantization and optical conductivity evolution with variable Berry phase in the α-T3 model. Physical Review B: Condensed Matter and Materials Physics, 2015, 92(24): 245410
CrossRef Google scholar
[60]
Chen L, Zuber J W, Ma Z, Zhang C. Nonlinear optical response of the α-T3 model due to the nontrivial topology of the band dispersion. Physical Review B: Condensed Matter and Materials Physics, 2019, 100(3): 035440
CrossRef Google scholar
[61]
Dóra B, Kailasvuori J, Moessner R. Lattice generalization of the Dirac equation to general spin and the role of the flat band. Physical Review B: Condensed Matter and Materials Physics, 2011, 84(19): 195422
CrossRef Google scholar
[62]
Tapasztó L, Dobrik G, Nemes-Incze P, Vertesy G, Lambin P, Biró L P. Tuning the electronic structure of graphene by ion irradiation. Physical Review B: Condensed Matter and Materials Physics, 2008, 78(23): 233407
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(1045 KB)

Accesses

Citations

Detail

Sections
Recommended

/