Multifunctional layered black phosphorene-based nanoplatform for disease diagnosis and treatment: a review
Xiazi HUANG, Yingying ZHOU, Chi Man WOO, Yue PAN, Liming NIE, Puxiang LAI
Multifunctional layered black phosphorene-based nanoplatform for disease diagnosis and treatment: a review
As an outstanding two-dimensional material, black phosphorene, has attracted significant attention in the biomedicine field due to its large surface area, strong optical absorption, distinct bioactivity, excellent biocompatibility, and high biodegradability. In this review, the preparation and properties of black phosphorene are summarized first. Thereafter, black phosphorene-based multifunctional platforms employed for the diagnosis and treatment of diseases, including cancer, bone injuries, brain diseases, progressive oxidative diseases, and kidney injury, are reviewed in detail. This review provides a better understanding of the exciting properties of black phosphorene, such as its high drug-loading efficiency, photothermal conversion capability, high 1O2 generation efficiency, and high electrical conductivity, as well as how these properties can be exploited in biomedicine. Finally, the research perspectives of black phosphorene are discussed.
black phosphorus (BP) / delivery nanoplatform / bioimaging / cancer therapy / bone regeneration
[1] |
Shi Y, Liang X, Yuan B, Chen V, Li H, Hui F, Yu Z, Yuan F, Pop E, Wong H S P, Lanza M. Electronic synapses made of layered two-dimensional materials. Nature Electronics, 2018, 1(8): 458–465
CrossRef
Google scholar
|
[2] |
Koppens F H, Mueller T, Avouris P, Ferrari A C, Vitiello M S, Polini M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature Nanotechnology, 2014, 9(10): 780–793
CrossRef
Pubmed
Google scholar
|
[3] |
Kang K, Lee K H, Han Y, Gao H, Xie S, Muller D A, Park J. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature, 2017, 550(7675): 229–233
CrossRef
Pubmed
Google scholar
|
[4] |
Deng D, Novoselov K S, Fu Q, Zheng N, Tian Z, Bao X. Catalysis with two-dimensional materials and their heterostructures. Nature Nanotechnology, 2016, 11(3): 218–230
CrossRef
Pubmed
Google scholar
|
[5] |
Jin L, Zhou J, Lai P. Tunable absorption characteristics in multilayered structures with graphene for biosensing. Journal of Innovative Optical Health Sciences, 2020, 13(04): 2050017
CrossRef
Google scholar
|
[6] |
Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F. Direct observation of a widely tunable bandgap in bilayer graphene. Nature, 2009, 459(7248): 820–823
CrossRef
Pubmed
Google scholar
|
[7] |
Radovic L R, Bockrath B. On the chemical nature of graphene edges: origin of stability and potential for magnetism in carbon materials. Journal of the American Chemical Society, 2005, 127(16): 5917–5927
CrossRef
Pubmed
Google scholar
|
[8] |
Tassin P, Koschny T, Soukoulis C M. Graphene for terahertz applications. Science, 2013, 341(6146): 620–621
CrossRef
Pubmed
Google scholar
|
[9] |
Yang K, Feng L, Liu Z. Stimuli responsive drug delivery systems based on nano-graphene for cancer therapy. Advanced Drug Delivery Reviews, 2016, 105(Pt B): 228–241
CrossRef
Google scholar
|
[10] |
Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Le Lay G. Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Physical Review Letters, 2012, 108(15): 155501
CrossRef
Pubmed
Google scholar
|
[11] |
Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, Xu X. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature, 2019, 567(7746): 66–70
CrossRef
Pubmed
Google scholar
|
[12] |
Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 transistors. Nature Nanotechnology, 2011, 6(3): 147–150
CrossRef
Pubmed
Google scholar
|
[13] |
Coleman J N, Lotya M, O’Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J, Shvets I V, Arora S K, Stanton G, Kim H Y, Lee K, Kim G T, Duesberg G S, Hallam T, Boland J J, Wang J J, Donegan J F, Grunlan J C, Moriarty G, Shmeliov A, Nicholls R J, Perkins J M, Grieveson E M, Theuwissen K, McComb D W, Nellist P D, Nicolosi V. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011, 331(6017): 568–571
CrossRef
Pubmed
Google scholar
|
[14] |
Ge X, Xia Z, Guo S. Recent advances on black phosphorus for biomedicine and biosensing. Advanced Functional Materials, 2019, 29(29): 1900318
CrossRef
Google scholar
|
[15] |
An D, Fu J, Xie Z, Xing C, Zhang B, Wang B, Qiu M. Progress in the therapeutic applications of polymer-decorated black phosphorus and black phosphorus analog nanomaterials in biomedicine. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2020, 8(32): 7076–7120
CrossRef
Pubmed
Google scholar
|
[16] |
Qiu M, Ren W X, Jeong T, Won M, Park G Y, Sang D K, Liu L P, Zhang H, Kim J S. Omnipotent phosphorene: a next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications. Chemical Society Reviews, 2018, 47(15): 5588–5601
CrossRef
Pubmed
Google scholar
|
[17] |
You H, Jia Y, Wu Z, Wang F, Huang H, Wang Y. Room-temperature pyro-catalytic hydrogen generation of 2D few-layer black phosphorene under cold-hot alternation. Nature Communications, 2018, 9(1): 2889
CrossRef
Pubmed
Google scholar
|
[18] |
Lei W, Liu G, Zhang J, Liu M. Black phosphorus nanostructures: recent advances in hybridization, doping and functionalization. Chemical Society Reviews, 2017, 46(12): 3492–3509
CrossRef
Pubmed
Google scholar
|
[19] |
Castellanos-Gomez A, Vicarelli L, Prada E, Island J O, Narasimha-Acharya K L, Blanter S I, Groenendijk D J, Buscema M, Steele G A, Alvarez J V, Zandbergen H W, Palacios J J, van der Zant H S J. Isolation and characterization of few-layer black phosphorus. 2D Materials, 2014, 1(2): 025001
|
[20] |
Xiong S, Chen X, Liu Y, Fan T, Wang Q, Zhang H, Chen T. Black phosphorus as a versatile nanoplatform: from unique properties to biomedical applications. Journal of Innovative Optical Health Sciences, 2020, 13(5): 2030008
|
[21] |
Abellán G, Lloret V, Mundloch U, Marcia M, Neiss C, Görling A, Varela M, Hauke F, Hirsch A. Noncovalent functionalization of black phosphorus. Angewandte Chemie International Edition in English, 2016, 55(47): 14557–14562
CrossRef
Pubmed
Google scholar
|
[22] |
Bolognesi M, Moschetto S, Trapani M, Prescimone F, Ferroni C, Manca G, Ienco A, Borsacchi S, Caporali M, Muccini M, Peruzzini M, Serrano-Ruiz M, Calucci L, Castriciano M A, Toffanin S. Noncovalent functionalization of 2D black phosphorus with fluorescent boronic derivatives of pyrene for probing and modulating the interaction with molecular oxygen. ACS Applied Materials & Interfaces, 2019, 11(25): 22637–22647
CrossRef
Pubmed
Google scholar
|
[23] |
Feng Q, Liu H, Zhu M, Shang J, Liu D, Cui X, Shen D, Kou L, Mao D, Zheng J, Li C, Zhang J, Xu H, Zhao J. Electrostatic functionalization and passivation of water-exfoliated few-layer black phosphorus by poly dimethyldiallyl ammonium chloride and its ultrafast laser application. ACS Applied Materials & Interfaces, 2018, 10(11): 9679–9687
CrossRef
Pubmed
Google scholar
|
[24] |
Zhang L, Gao L F, Li L, Hu C X, Yang Q Q, Zhu Z Y, Peng R, Wang Q, Peng Y, Jin J, Zhang H L. Negatively charged 2D black phosphorus for highly efficient covalent functionalization. Materials Chemistry Frontiers, 2018, 2(9): 1700–1706
CrossRef
Google scholar
|
[25] |
Meng Z, Stolz R M, Mendecki L, Mirica K A. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chemical Reviews, 2019, 119(1): 478–598
CrossRef
Pubmed
Google scholar
|
[26] |
Jiang X, Jin H, Sun Y, Sun Z, Gui R. Assembly of black phosphorus quantum dots-doped MOF and silver nanoclusters as a versatile enzyme-catalyzed biosensor for solution, flexible substrate and latent fingerprint visual detection of baicalin. Biosensors & Bioelectronics, 2020, 152: 112012
CrossRef
Pubmed
Google scholar
|
[27] |
Irshad R, Tahir K, Li B, Sher Z, Ali J, Nazir S. A revival of 2D materials, phosphorene: its application as sensors. Journal of Industrial and Engineering Chemistry, 2018, 64: 6460–6469
CrossRef
Google scholar
|
[28] |
Xu Z, Hu L, Yuan J, Zhang Y, Guo Y, Jin Z, Long F, Long Y, Liang H, Ruan S, Zeng Y J. A fluorescence probe for metal ions based on black phosphorus quantum dots. Advanced Materials Interfaces, 2020, 7(7): 1902075
CrossRef
Google scholar
|
[29] |
Sun Y, Jin H, Jiang X, Gui R. Black phosphorus nanosheets adhering to thionine-doped 2D MOF as a smart aptasensor enabling accurate capture and ratiometric electrochemical detection of target microRNA. Sensors and Actuators. B, Chemical, 2020, 309: 127777
CrossRef
Google scholar
|
[30] |
Sun Z, Zhao Y, Li Z, Cui H, Zhou Y, Li W, Tao W, Zhang H, Wang H, Chu P K, Yu X F. TiL4-coordinated black phosphorus quantum dots as an efficient contrast agent for in vivo photoacoustic imaging of cancer. Small, 2017, 13(11): 1602896
CrossRef
Pubmed
Google scholar
|
[31] |
Sun C, Wen L, Zeng J, Wang Y, Sun Q, Deng L, Zhao C, Li Z. One-pot solventless preparation of PEGylated black phosphorus nanoparticles for photoacoustic imaging and photothermal therapy of cancer. Biomaterials, 2016, 91: 81–89
CrossRef
Pubmed
Google scholar
|
[32] |
Tao W, Zhu X, Yu X, Zeng X, Xiao Q, Zhang X, Ji X, Wang X, Shi J, Zhang H, Mei L. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Advanced Materials, 2017, 29(1): 1603276
CrossRef
Pubmed
Google scholar
|
[33] |
Wang H, Yang X, Shao W, Chen S, Xie J, Zhang X, Wang J, Xie Y. Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. Journal of the American Chemical Society, 2015, 137(35): 11376–11382
CrossRef
Pubmed
Google scholar
|
[34] |
Qian X, Gu Z, Chen Y. Two-dimensional black phosphorus nanosheets for theranostic nanomedicine. Materials Horizons, 2017, 4(5): 800–816
CrossRef
Google scholar
|
[35] |
Choi J R, Yong K W, Choi J Y, Nilghaz A, Lin Y, Xu J, Lu X. Black phosphorus and its biomedical applications. Theranostics, 2018, 8(4): 1005–1026
CrossRef
Pubmed
Google scholar
|
[36] |
Childers D L, Corman J, Edwards M, Elser J J. Sustainability challenges of phosphorus and food: solutions from closing the human phosphorus cycle. Bioscience, 2011, 61(2): 117–124
CrossRef
Google scholar
|
[37] |
Qiu M, Singh A, Wang D, Qu J, Swihart M, Zhang H, Prasad P N. Biocompatible and biodegradable inorganic nanostructures for nanomedicine: silicon and black phosphorus. Nano Today, 2019, 25: 135–155
CrossRef
Google scholar
|
[38] |
Wang Z, Liu Z, Su C, Yang B, Fei X, Li Y, Hou Y, Zhao H, Guo Y, Zhuang Z, Zhong H, Guo Z. Biodegradable black phosphorus-based nanomaterials in biomedicine: theranostic applications. Current Medicinal Chemistry, 2019, 26(10): 1788–1805
CrossRef
Pubmed
Google scholar
|
[39] |
Anju S, Ashtami J, Mohanan P V. Black phosphorus, a prospective graphene substitute for biomedical applications. Materials Science and Engineering C, 2019, 97: 978–993
CrossRef
Pubmed
Google scholar
|
[40] |
Yu J, Wang Q, O’Hare D, Sun L. Preparation of two dimensional layered double hydroxide nanosheets and their applications. Chemical Society Reviews, 2017, 46(19): 5950–5974
CrossRef
Pubmed
Google scholar
|
[41] |
López-Cabrelles J, Mañas-Valero S, Vitórica-Yrezábal I J, Bereciartua P J, Rodríguez-Velamazán J A, Waerenborgh J C, Vieira B J C, Davidovikj D, Steeneken P G, van der Zant H S J, Mínguez Espallargas G, Coronado E. Isoreticular two-dimensional magnetic coordination polymers prepared through pre-synthetic ligand functionalization. Nature Chemistry, 2018, 10(10): 1001–1007
CrossRef
Pubmed
Google scholar
|
[42] |
Han J H, Kwak M, Kim Y, Cheon J. Recent advances in the solution-based preparation of two-dimensional layered transition metal chalcogenide nanostructures. Chemical Reviews, 2018, 118(13): 6151–6188
CrossRef
Pubmed
Google scholar
|
[43] |
Eswaraiah V, Zeng Q, Long Y, Liu Z. Black phosphorus nanosheets: synthesis, characterization and applications. Small, 2016, 12(26): 3480–3502
CrossRef
Pubmed
Google scholar
|
[44] |
Bridgman P W. Two new modifications of phosphorus. Journal of the American Chemical Society, 1914, 36(7): 1344–1363
CrossRef
Google scholar
|
[45] |
Aldave S H, Yogeesh M N, Zhu W, Kim J, Sonde S S, Nayak A P, Akinwande D. Characterization and sonochemical synthesis of black phosphorus from red phosphorus. 2D Materials, 2016, 3(1): 014007
|
[46] |
Endo S, Akahama Y, Terada S, Narita S. Growth of large single crystals of black phosphorus under high pressure. Japanese Journal of Applied Physics, 1982, 21(Part 2, No. 8): L482–L484
|
[47] |
Krebs H, Weitz H, Worms K H. About the structure and properties of semimetals VIII. The catalytic representation of black phosphorus. Zeitschrift fur Anorganische und Allgemeine Chemie, 1955, 280(1–3): 119–133
CrossRef
Google scholar
|
[48] |
Baba M, Izumida F, Takeda Y, Morita A. Preparation of black phosphorus single crystals by a completely closed bismuth-flux method and their crystal morphology. Japanese Journal of Applied Physics, 1989, 28(Part 1, No. 6): 1019–1022
|
[49] |
Lange S, Schmidt P, Au Nilges T. 3SnP7@black phosphorus: an easy access to black phosphorus. Inorganic Chemistry, 2007, 46(10): 4028–4035
CrossRef
Pubmed
Google scholar
|
[50] |
Köpf M, Eckstein N, Pfister D, Grotz C, Krüger I, Greiwe M, Hansen T, Kohlmann H, Nilges T. Access and in situ growth of phosphorene-precursor black phosphorus. Journal of Crystal Growth, 2014, 405: 6–10
CrossRef
Google scholar
|
[51] |
Sun Q, Zhao X, Feng Y, Wu Y, Zhang Z, Zhang X, Wang X, Feng S, Liu X. Pressure quenching: a new route for the synthesis of black phosphorus. Inorganic Chemistry Frontiers, 2018, 5(3): 669–674
CrossRef
Google scholar
|
[52] |
Wang D, Yi P, Wang L, Zhang L, Li H, Lu M, Xie X, Huang L, Huang W. Revisiting the growth of black phosphorus in Sn-I assisted reactions. Frontiers in Chemistry, 2019, 7: 21
CrossRef
Pubmed
Google scholar
|
[53] |
Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30): 10451–10453
CrossRef
Pubmed
Google scholar
|
[54] |
Hultgren R, Gingrich N S, Warren B E. The atomic distribution in red and black phosphorus and the crystal structure of black phosphorus. Journal of Chemical Physics, 1935, 3(6): 351–355
CrossRef
Google scholar
|
[55] |
Liu F, Wu W, Bai Y, Chae S H, Li Q, Wang J, Hone J, Zhu X Y. Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices. Science, 2020, 367(6480): 903–906
CrossRef
Pubmed
Google scholar
|
[56] |
Kou L, Chen C, Smith S C. Phosphorene: fabrication, properties, and applications. Journal of Physical Chemistry Letters, 2015, 6(14): 2794–2805
CrossRef
Pubmed
Google scholar
|
[57] |
Huang Y, Sutter E, Shi N N, Zheng J, Yang T, Englund D, Gao H J, Sutter P. Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials. ACS Nano, 2015, 9(11): 10612–10620
CrossRef
Pubmed
Google scholar
|
[58] |
Cai X, Luo Y, Liu B, Cheng H M. Preparation of 2D material dispersions and their applications. Chemical Society Reviews, 2018, 47(16): 6224–6266
CrossRef
Pubmed
Google scholar
|
[59] |
Guan L, Xing B, Niu X, Wang D, Yu Y, Zhang S, Yan X, Wang Y, Sha J. Metal-assisted exfoliation of few-layer black phosphorus with high yield. Chemical Communications (Cambridge), 2018, 54(6): 595–598
CrossRef
Pubmed
Google scholar
|
[60] |
Lu W, Nan H, Hong J, Chen Y, Zhu C, Liang Z, Ma X, Ni Z, Jin C, Zhang Z. Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Research, 2014, 7(6): 853–859
CrossRef
Google scholar
|
[61] |
Pei J, Gai X, Yang J, Wang X, Yu Z, Choi D Y, Luther-Davies B, Lu Y. Producing air-stable monolayers of phosphorene and their defect engineering. Nature Communications, 2016, 7(1): 10450
CrossRef
Pubmed
Google scholar
|
[62] |
Hanlon D, Backes C, Doherty E, Cucinotta C S, Berner N C, Boland C, Lee K, Harvey A, Lynch P, Gholamvand Z, Zhang S, Wang K, Moynihan G, Pokle A, Ramasse Q M, McEvoy N, Blau W J, Wang J, Abellan G, Hauke F, Hirsch A, Sanvito S, O’Regan D D, Duesberg G S, Nicolosi V, Coleman J N. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nature Communications, 2015, 6(1): 8563
CrossRef
Pubmed
Google scholar
|
[63] |
Kang J, Wells S A, Wood J D, Lee J H, Liu X, Ryder C R, Zhu J, Guest J R, Husko C A, Hersam M C. Stable aqueous dispersions of optically and electronically active phosphorene. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(42): 11688–11693
CrossRef
Pubmed
Google scholar
|
[64] |
Brent J R, Savjani N, Lewis E A, Haigh S J, Lewis D J, O’Brien P. Production of few-layer phosphorene by liquid exfoliation of black phosphorus. Chemical Communications (Cambridge), 2014, 50(87): 13338–13341
CrossRef
Pubmed
Google scholar
|
[65] |
Lin S, Chui Y, Li Y, Lau S P. Liquid-phase exfoliation of black phosphorus and its applications. FlatChem, 2017, 2: 15–37
CrossRef
Google scholar
|
[66] |
Yasaei P, Kumar B, Foroozan T, Wang C, Asadi M, Tuschel D, Indacochea J E, Klie R F, Salehi-Khojin A. High-quality black phosphorus atomic layers by liquid-phase exfoliation. Advanced Materials, 2015, 27(11): 1887–1892
CrossRef
Pubmed
Google scholar
|
[67] |
Woomer A H, Farnsworth T W, Hu J, Wells R A, Donley C L, Warren S C. Phosphorene: synthesis, scale-up, and quantitative optical spectroscopy. ACS Nano, 2015, 9(9): 8869–8884
CrossRef
Pubmed
Google scholar
|
[68] |
Chu P. Plasma-surface modification of biomaterials. Materials Science and Engineering R Reports, 2002, 36(5–6): 143–206
CrossRef
Google scholar
|
[69] |
Liu R, Wang Y, Liu D, Zou Y, Wang S. Water-plasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation. Advanced Materials, 2017, 29(30): 1701546
CrossRef
Pubmed
Google scholar
|
[70] |
Lee H, Bratescu M A, Ueno T, Saito N. Solution plasma exfoliation of graphene flakes from graphite electrodes. RSC Advances, 2014, 4(93): 51758–51765
CrossRef
Google scholar
|
[71] |
Elumalai S, Su C Y, Yoshimura M. Scalable one-pot synthesis of nitrogen and boron co-doped few layered graphene by submerged liquid plasma exfoliation. Frontiers in Materials, 2019, 6: 216
CrossRef
Google scholar
|
[72] |
Huang H, Gao M, Kang Y, Li J, Wang J, Wu L, Chu P K, Huang Y, Ibarra M R, Yu X F. Rapid and scalable production of high-quality phosphorene by plasma-liquid technology. Chemical Communications (Cambridge), 2020, 56(2): 221–224
CrossRef
Pubmed
Google scholar
|
[73] |
Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z, De S, McGovern I T, Holland B, Byrne M, Gun’Ko Y K, Boland J J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A C, Coleman J N. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 2008, 3(9): 563–568
CrossRef
Pubmed
Google scholar
|
[74] |
Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324(5932): 1312–1314
CrossRef
Pubmed
Google scholar
|
[75] |
Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457(7230): 706–710
CrossRef
Pubmed
Google scholar
|
[76] |
Li X, Deng B, Wang X, Chen S, Vaisman M, Karato S, Pan G, Lee L M, Cha J, Wang H, Xia F. Synthesis of thin-film black phosphorus on a flexible substrate. 2D Materials, 2015, 2(3): 031002
|
[77] |
Smith J B, Hagaman D, Ji H F. Growth of 2D black phosphorus film from chemical vapor deposition. Nanotechnology, 2016, 27(21): 215602
CrossRef
Pubmed
Google scholar
|
[78] |
Li C, Wu Y, Deng B, Xie Y, Guo Q, Yuan S, Chen X, Bhuiyan M, Wu Z, Watanabe K, Taniguchi T, Wang H, Cha J J, Snure M, Fei Y, Xia F. Synthesis of crystalline black phosphorus thin film on sapphire. Advanced Materials, 2018, 30(6): 1703748
CrossRef
Pubmed
Google scholar
|
[79] |
Deng L, Xu Y, Sun C, Yun B, Sun Q, Zhao C, Li Z. Functionalization of small black phosphorus nanoparticles for targeted imaging and photothermal therapy of cancer. Science Bulletin, 2018, 63(14): 917–924
CrossRef
Google scholar
|
[80] |
Xu Y, Ren F, Liu H, Zhang H, Han Y, Liu Z, Wang W, Sun Q, Zhao C, Li Z. Cholesterol-modified black phosphorus nanospheres for the first NIR-II fluorescence bioimaging. ACS Applied Materials & Interfaces, 2019, 11(24): 21399–21407
CrossRef
Pubmed
Google scholar
|
[81] |
Guo T, Lin Y, Jin G, Weng R, Song J, Liu X, Huang G, Hou L, Yang H. Manganese-phenolic network-coated black phosphorus nanosheets for theranostics combining magnetic resonance/photoacoustic dual-modal imaging and photothermal therapy. Chemical Communications (Cambridge), 2019, 55(6): 850–853
CrossRef
Pubmed
Google scholar
|
[82] |
Zhang Q, Wang W, Zhang M, Wu F, Zheng T, Sheng B, Liu Y, Shen J, Zhou N, Sun Y. A theranostic nanocomposite with integrated black phosphorus nanosheet, Fe3O4@MnO2-doped upconversion nanoparticles and chlorin for simultaneous multimodal imaging, highly efficient photodynamic and photothermal therapy. Chemical Engineering Journal, 2020, 391: 123525
CrossRef
Google scholar
|
[83] |
Zhao Y, Tong L, Li Z, Yang N, Fu H, Wu L, Cui H, Zhou W, Wang J, Wang H, Chu P K, Yu X F. Stable and multifunctional dye-modified black phosphorus nanosheets for near-infrared imaging-guided photothermal therapy. Chemistry of Materials, 2017, 29(17): 7131–7139
CrossRef
Google scholar
|
[84] |
Geng B, Shen W, Li P, Fang F, Qin H, Li X K, Pan D, Shen L. Carbon dot-passivated black phosphorus nanosheet hybrids for synergistic cancer therapy in the NIR-II window. ACS Applied Materials & Interfaces, 2019, 11(48): 44949–44960
CrossRef
Pubmed
Google scholar
|
[85] |
Huang W Q, Wang F, Nie X, Zhang Z, Chen G, Xia L, Wang L H, Ding S G, Hao Z Y, Zhang W J, Hong C Y, You Y Z. Stable black phosphorus nanosheets exhibiting high tumor-accumulating and mitochondria-targeting for efficient photothermal therapy via double functionalization. ACS Applied Bio Materials, 2020, 3(2): 1176–1186
CrossRef
Google scholar
|
[86] |
Chen B Q, Kankala R K, Zhang Y, Xiang S T, Tang H X, Wang Q, Yang D Y, Wang S B, Zhang Y S, Liu G, Chen A Z. Gambogic acid augments black phosphorus quantum dots (BPQDs)-based synergistic chemo-photothermal therapy through downregulating heat shock protein expression. Chemical Engineering Journal, 2020, 390: 124312
CrossRef
Google scholar
|
[87] |
Guo T, Wu Y, Lin Y, Xu X, Lian H, Huang G, Liu J Z, Wu X, Yang H H. Black phosphorus quantum dots with renal clearance property for efficient photodynamic therapy. Small, 2018, 14(4): 1702815
CrossRef
Pubmed
Google scholar
|
[88] |
Liu J, Du P, Mao H, Zhang L, Ju H, Lei J. Dual-triggered oxygen self-supply black phosphorus nanosystem for enhanced photodynamic therapy. Biomaterials, 2018, 172: 83–91
CrossRef
Pubmed
Google scholar
|
[89] |
Chen W, Ouyang J, Liu H, Chen M, Zeng K, Sheng J, Liu Z, Han Y, Wang L, Li J, Deng L, Liu Y N, Guo S. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Advanced Materials, 2017, 29(5): 1603864
CrossRef
Pubmed
Google scholar
|
[90] |
Qiu M, Wang D, Liang W, Liu L, Zhang Y, Chen X, Sang D K, Xing C, Li Z, Dong B, Xing F, Fan D, Bao S, Zhang H, Cao Y. Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(3): 501–506
CrossRef
Pubmed
Google scholar
|
[91] |
Gao N, Nie J, Wang H, Xing C, Mei L, Xiong W, Zeng X, Peng Z. A versatile platform based on black phosphorus nanosheets with enhanced stability for cancer synergistic therapy. Journal of Biomedical Nanotechnology, 2018, 14(11): 1883–1897
CrossRef
Pubmed
Google scholar
|
[92] |
Zeng X, Luo M, Liu G, Wang X, Tao W, Lin Y, Ji X, Nie L, Mei L. Polydopamine-modified black phosphorous nanocapsule with enhanced stability and photothermal performance for tumor multimodal treatments. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2018, 5(10): 1800510
CrossRef
Pubmed
Google scholar
|
[93] |
Chen L, Qian M, Jiang H, Zhou Y, Du Y, Yang Y, Huo T, Huang R, Wang Y. Multifunctional mesoporous black phosphorus-based nanosheet for enhanced tumor-targeted combined therapy with biodegradation-mediated metastasis inhibition. Biomaterials, 2020, 236: 119770
CrossRef
Pubmed
Google scholar
|
[94] |
Hai L, Zhang A, Wu X, Cheng H, He D, Wang T, He X, Wang K. Liposome-stabilized black phosphorus for photothermal drug delivery and oxygen self-enriched photodynamic therapy. ACS Applied Nano Materials, 2020, 3(1): 563–575
CrossRef
Google scholar
|
[95] |
Li Z, Hu Y, Fu Q, Liu Y, Wang J, Song J, Yang H. NIR/ROS-responsive black phosphorus QD vesicles as immunoadjuvant carrier for specific cancer photodynamic immunotherapy. Advanced Functional Materials, 2020, 30(3): 1905758
CrossRef
Google scholar
|
[96] |
Liu J, Du P, Liu T, Córdova Wong B J, Wang W, Ju H, Lei J. A black phosphorus/manganese dioxide nanoplatform: oxygen self-supply monitoring, photodynamic therapy enhancement and feedback. Biomaterials, 2019, 192: 179–188
CrossRef
Pubmed
Google scholar
|
[97] |
Wang Z, Zhao J, Tang W, Hu L, Chen X, Su Y, Zou C, Wang J, Lu W W, Zhen W, Zhang R, Yang D, Peng S. Multifunctional nanoengineered hydrogels consisting of black phosphorus nanosheets upregulate bone formation. Small, 2019, 15(41): 1901560
CrossRef
Pubmed
Google scholar
|
[98] |
Pan W, Dai C, Li Y, Yin Y, Gong L, Machuki J O, Yang Y, Qiu S, Guo K, Gao F. PRP-chitosan thermoresponsive hydrogel combined with black phosphorus nanosheets as injectable biomaterial for biotherapy and phototherapy treatment of rheumatoid arthritis. Biomaterials, 2020, 239: 119851
CrossRef
Pubmed
Google scholar
|
[99] |
Xu C, Xu Y, Yang M, Chang Y, Nie A, Liu Z, Wang J, Luo Z. Black-phosphorus-incorporated hydrogel as a conductive and biodegradable platform for enhancement of the neural differentiation of mesenchymal stem cells. Advanced Functional Materials, 2020, 30(39): 2000177
CrossRef
Google scholar
|
[100] |
Chen W, Ouyang J, Yi X, Xu Y, Niu C, Zhang W, Wang L, Sheng J, Deng L, Liu Y N, Guo S. Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy. Advanced Materials, 2018, 30(3): 1703458
CrossRef
Pubmed
Google scholar
|
[101] |
Yang J, Liu W, Sun Y, Dong X. LVFFARK-PEG-stabilized black phosphorus nanosheets potently inhibit amyloid-β fibrillogenesis. Langmuir, 2020, 36(7): 1804–1812
CrossRef
Pubmed
Google scholar
|
[102] |
Hou J, Wang H, Ge Z, Zuo T, Chen Q, Liu X, Mou S, Fan C, Xie Y, Wang L. Treating acute kidney injury with antioxidative black phosphorus nanosheets. Nano Letters, 2020, 20(2): 1447–1454
CrossRef
Pubmed
Google scholar
|
[103] |
Huang X, Shang W, Deng H, Zhou Y, Cao F, Fang C, Lai P, Tian J. Clothing spiny nanoprobes against the mononuclear phagocyte system clearance in vivo: photoacoustic diagnosis and photothermal treatment of early stage liver cancer with erythrocyte membrane-camouflaged gold nanostars. Applied Materials Today, 2020, 18: 100484
|
[104] |
Lai P, Wang L, Tay J W, Wang L V. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media. Nature Photonics, 2015, 9(2): 126–132
CrossRef
Pubmed
Google scholar
|
[105] |
Zhou Y, Cao F, Li H, Huang X, Wei D, Wang L, Lai P. Photoacoustic imaging of microenvironmental changes in facial cupping therapy. Biomedical Optics Express, 2020, 11(5): 2394–2401
CrossRef
Pubmed
Google scholar
|
[106] |
Shao J, Xie H, Huang H, Li Z, Sun Z, Xu Y, Xiao Q, Yu X F, Zhao Y, Zhang H, Wang H, Chu P K. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nature Communications, 2016, 7(1): 12967
CrossRef
Pubmed
Google scholar
|
[107] |
Kenry Y, Duan Y, Liu B. Recent advances of optical imaging in the second near-infrared window. Advanced Materials, 2018, 30(47): 1802394
CrossRef
Pubmed
Google scholar
|
[108] |
Gu C, Zheng C, Liu B, Feng T, Ma J, Sun H. Synthesis of a dithieno[3,2-b:2′,3′-d]silole-based conjugated polymer and characterization of its short wave near-infrared fluorescence properties. Journal of Innovative Optical Health Sciences, 2020, 13(5): 2041002
CrossRef
Google scholar
|
[109] |
Idris N M, Gnanasammandhan M K, Zhang J, Ho P C, Mahendran R, Zhang Y. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nature Medicine, 2012, 18(10): 1580–1585
CrossRef
Pubmed
Google scholar
|
[110] |
Hemmer E, Benayas A, Légaré F, Vetrone F. Exploiting the biological windows: current perspectives on fluorescent bioprobes emitting above 1000 nm. Nanoscale Horizons, 2016, 1(3): 168–184
CrossRef
Pubmed
Google scholar
|
[111] |
Liu Y, Liu H, Yan H, Liu Y, Zhang J, Shan W, Lai P, Li H, Ren L, Li Z, Nie L. Aggregation-induced absorption enhancement for deep near-infrared II photoacoustic imaging of brain gliomas in vivo. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2019, 6(8): 1801615
CrossRef
Pubmed
Google scholar
|
[112] |
Brown S B, Brown E A, Walker I. The present and future role of photodynamic therapy in cancer treatment. The Lancet. Oncology, 2004, 5(8): 497–508
CrossRef
Pubmed
Google scholar
|
[113] |
Castano A P, Mroz P, Hamblin M R. Photodynamic therapy and anti-tumour immunity. Nature Reviews. Cancer, 2006, 6(7): 535–545
CrossRef
Pubmed
Google scholar
|
[114] |
Fu J, An D, Song Y, Wang C, Qiu M, Zhang H. Janus nanoparticles for cellular delivery chemotherapy: recent advances and challenges. Coordination Chemistry Reviews, 2020, 422: 213467
CrossRef
Google scholar
|
[115] |
Devlin E J, Denson L A, Whitford H S. Cancer treatment side effects: a meta-analysis of the relationship between response expectancies and experience. Journal of Pain and Symptom Management, 2017, 54(2): 245–258
CrossRef
Pubmed
Google scholar
|
[116] |
Rothenberg M, Ling V. Multidrug resistance: molecular biology and clinical relevance. Journal of the National Cancer Institute, 1989, 81(12): 907–910
CrossRef
Pubmed
Google scholar
|
[117] |
Guo R, Peng H, Tian Y, Shen S, Yang W. Mitochondria-targeting magnetic composite nanoparticles for enhanced phototherapy of cancer. Small, 2016, 12(33): 4541–4552
CrossRef
Pubmed
Google scholar
|
[118] |
Huang K, Wu J, Gu Z. Black phosphorus hydrogel scaffolds enhance bone regeneration via a sustained supply of calcium-free phosphorus. ACS Applied Materials & Interfaces, 2019, 11(3): 2908–2916
CrossRef
Pubmed
Google scholar
|
[119] |
Wang Y, Hu X, Zhang L, Zhu C, Wang J, Li Y, Wang Y, Wang C, Zhang Y, Yuan Q. Bioinspired extracellular vesicles embedded with black phosphorus for molecular recognition-guided biomineralization. Nature Communications, 2019, 10(1): 2829
CrossRef
Pubmed
Google scholar
|
[120] |
Raucci M G, Fasolino I, Caporali M, Serrano-Ruiz M, Soriente A, Peruzzini M, Ambrosio L. Exfoliated black phosphorus promotes in vitro bone regeneration and suppresses osteosarcoma progression through cancer-related inflammation inhibition. ACS Applied Materials & Interfaces, 2019, 11(9): 9333–9342
CrossRef
Pubmed
Google scholar
|
[121] |
Lee Y B, Song S J, Shin Y C, Jung Y J, Kim B, Kang M S, Kwon I K, Hyon S H, Lee H U, Jung S H, Lim D, Han D W. Ternary nanofiber matrices composed of PCL/black phosphorus/collagen to enhance osteodifferentiation. Journal of Industrial and Engineering Chemistry, 2019, 80: 802–810
CrossRef
Google scholar
|
[122] |
Qian Y, Yuan W E, Cheng Y, Yang Y, Qu X, Fan C. Concentrically integrative bioassembly of a three-dimensional black phosphorus nanoscaffold for restoring neurogenesis, angiogenesis, and immune homeostasis. Nano Letters, 2019, 19(12): 8990–9001
CrossRef
Pubmed
Google scholar
|
[123] |
Querfurth H W, LaFerla F M. Alzheimer’s disease. New England Journal of Medicine, 2010, 362(4): 329–344
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |