Terahertz quantum cascade lasers with sampled lateral gratings for single mode operation
Dixiang SHAO, Chen YAO, Zhanglong FU, Wenjian WAN, Ziping LI, Juncheng CAO
Terahertz quantum cascade lasers with sampled lateral gratings for single mode operation
In this paper, we presented single mode terahertz quantum cascade lasers (THz QCLs) with sampled lateral grating emitting approximately 3.4 THz. Due to strong mode selection, the implementation of sampled lateral grating on THz QCL ridges can result in stable single longitudinal mode emission with a side-mode suppression ratio larger than 20 dB. The measured peak power of the grating laser is improved by about 11.8% compared to the power of devices with uniform distributed feedback gratings. Furthermore, the far-field pattern of the presented device is uninfluenced by grating structures.
terahertz (THz) / quantum cascade laser (QCL) / sampled lateral grating
[1] |
Kumar S. Recent progress in terahertz quantum cascade lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 38–47
CrossRef
Google scholar
|
[2] |
Lin T T, Wang K, Wang L, Hirayama H. High output power THz quantum cascade lasers and their temperature dependent performance. Journal of Infrared and Millimeter Waves, 2018, 37(5): 513–518
|
[3] |
Williams B S, Kumar S, Hu Q, Reno J L. Distributed-feedback terahertz quantum-cascade lasers with laterally corrugated metal waveguides. Optics Letters, 2005, 30(21): 2909–2911
CrossRef
Pubmed
Google scholar
|
[4] |
Mahler L, Tredicucci A, Köhler R, Beltram F, Beere H E, Linfield E H, Ritchie D A. High performance operation of single-mode terahertz quantum cascade lasers with metallic gratings. Applied Physics Letters, 2005, 87(18): 181101
CrossRef
Google scholar
|
[5] |
Wienold M, Tahraoui A, Schrottke L, Sharma R, Lü X, Biermann K, Hey R, Grahn H T. Lateral distributed-feedback gratings for single-mode, high-power terahertz quantum-cascade lasers. Optics Express, 2012, 20(10): 11207–11217
CrossRef
Pubmed
Google scholar
|
[6] |
Amanti M I, Fischer M, Scalari G, Beck M, Faist J. Low-divergence single-mode terahertz quantum cascade laser. Nature Photonics, 2009, 3(10): 586–590
CrossRef
Google scholar
|
[7] |
Yao C, Xu T H, Wan W J, Li H, Cao J C. Single-mode tapered terahertz quantum cascade lasers with lateral gratings. Solid-State Electronics, 2016, 122: 52–55
CrossRef
Google scholar
|
[8] |
Li H, Manceau J M, Andronico A, Jagtap V, Sirtori C, Li L H, Linfield E H, Davies A G, Barbieri S. Coupled-cavity terahertz quantum cascade lasers for single mode operation. Applied Physics Letters, 2014, 104(24): 241102
CrossRef
Google scholar
|
[9] |
Lee B G, Belkin M A, Pflugl C, Diehl L, Zhang H A, Audet R M, MacArthur J, Bour D P, Corzine S W, Hofler G E, Capasso F. DFB quantum cascade laser arrays. IEEE Journal of Quantum Electronics, 2009, 45(5): 554–565
CrossRef
Google scholar
|
[10] |
Mansuripur T S, Menzel S, Blanchard R, Diehl L, Pflügl C, Huang Y, Ryou J H, Dupuis R D, Loncar M, Capasso F. Widely tunable mid-infrared quantum cascade lasers using sampled grating reflectors. Optics Express, 2012, 20(21): 23339–23348
CrossRef
Pubmed
Google scholar
|
[11] |
Slivken S, Sengupta S, Razeghi M. High power continuous operation of a widely tunable quantum cascade laser with an integrated amplifier. Applied Physics Letters, 2015, 107(25): 251101
CrossRef
Google scholar
|
[12] |
Jayaraman V, Chuang Z M, Coldren L A. Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings. IEEE Journal of Quantum Electronics, 1993, 29(6): 1824–1834
CrossRef
Google scholar
|
[13] |
Li L, Chen L, Zhu J, Freeman J, Dean P, Valavanis A, Davies A G, Linfield E H. Terahertz quantum cascade lasers with>1 W output powers. Electronics Letters, 2014, 50(4): 309–311
CrossRef
Google scholar
|
[14] |
Jayaraman V, Chuang Z M, Coldren L A. Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings. IEEE Journal of Quantum Electronics, 1993, 29(6): 1824–1834
CrossRef
Google scholar
|
/
〈 | 〉 |