Terahertz aqueous photonics
Qi JIN, Yiwen E, Xi-Cheng ZHANG
Terahertz aqueous photonics
Developing efficient and robust terahertz (THz) sources is of incessant interest in the THz community for their wide applications. With successive effort in past decades, numerous groups have achieved THz wave generation from solids, gases, and plasmas. However, liquid, especially liquid water has never been demonstrated as a THz source. One main reason leading the impediment is that water has strong absorption characteristics in the THz frequency regime.
A thin water film under intense laser excitation was introduced as the THz source to mitigate the considerable loss of THz waves from the absorption. Laser-induced plasma formation associated with a ponderomotive force-induced dipole model was proposed to explain the generation process. For the one-color excitation scheme, the water film generates a higher THz electric field than the air does under the identical experimental condition. Unlike the case of air, THz wave generation from liquid water prefers a sub-picosecond (200−800 fs) laser pulse rather than a femtosecond pulse (~50 fs). This observation results from the plasma generation process in water.
For the two-color excitation scheme, the THz electric field is enhanced by one-order of magnitude in comparison with the one-color case. Meanwhile, coherent control of the THz field is achieved by adjusting the relative phase between the fundamental pulse and the second-harmonic pulse.
To eliminate the total internal reflection of THz waves at the water-air interface of a water film, a water line produced by a syringe needle was used to emit THz waves. As expected, more THz radiation can be coupled out and detected. THz wave generation from other liquids were also tested.
terahertz (THz) wave generation / liquid water / laser-induced plasma
[1] |
Wang T, Klarskov P, Jepsen P U. Ultrabroadband THz time-domain spectroscopy of a free-flowing water film. IEEE Transactions on Terahertz Science and Technology, 2014, 4(4): 425–431
CrossRef
Google scholar
|
[2] |
Lee Y S. Principles of Terahertz Science and Technology. Vol. 170. New York: Springer US, 2009
|
[3] |
Mittleman D M. Twenty years of terahertz imaging. Optics Express, 2018, 26(8): 9417–9431
CrossRef
Pubmed
Google scholar
|
[4] |
Zhao J, e Y, Williams K, Zhang X C, Boyd R W. Spatial sampling of terahertz fields with sub-wavelength accuracy via probe-beam encoding. Light, Science & Applications, 2019, 8(1): 55
CrossRef
Pubmed
Google scholar
|
[5] |
Look D C. Molecular beam epitaxial GaAs grown at low temperatures. Thin Solid Films, 1993, 231(1–2): 61–73
CrossRef
Google scholar
|
[6] |
Beard M C, Turner G M, Schmuttenmaer C A. Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved terahertz spectroscopy. Journal of Applied Physics, 2001, 90(12): 5915–5923
CrossRef
Google scholar
|
[7] |
Boyd R W.Nonlinear Optics. 2nd ed. New York: Academic Press, 2003
|
[8] |
Hebling J, Almasi G, Kozma I, Kuhl J. Velocity matching by pulse front tilting for large area THz-pulse generation. Optics Express, 2002, 10(21): 1161–1166
CrossRef
Pubmed
Google scholar
|
[9] |
Hebling J, Yeh K L, Hoffmann M C, Bartal B, Nelson K A. Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities. Journal of the Optical Society of America B, Optical Physics, 2008, 25(7): B6–B19
CrossRef
Google scholar
|
[10] |
Fülöp J A, Pálfalvi L, Klingebiel S, Almási G, Krausz F, Karsch S, Hebling J. Generation of sub-mJ terahertz pulses by optical rectification. Optics Letters, 2012, 37(4): 557–559
CrossRef
Pubmed
Google scholar
|
[11] |
Zhang X C, Ma X, Jin Y, Lu T M, Boden E P, Phelps P D, Stewart K R, Yakymyshyn C P. Terahertz optical rectification from a nonlinear organic crystal. Applied Physics Letters, 1992, 61(26): 3080–3082
CrossRef
Google scholar
|
[12] |
Hauri C P, Ruchert C, Vicario C, Ardana F. Strong-field single-cycle THz pulses generated in an organic crystal. Applied Physics Letters, 2011, 99(16): 161116
CrossRef
Google scholar
|
[13] |
Shalaby M, Hauri C P. Demonstration of a low-frequency three-dimensional terahertz bullet with extreme brightness. Nature Communications, 2015, 6(1): 5976
CrossRef
Pubmed
Google scholar
|
[14] |
Fülöp J A, Tzortzakis S, Kampfrath T. Laser-driven strong-field terahertz sources. Advanced Optical Materials, 2020, 8(3): 1900681
CrossRef
Google scholar
|
[15] |
Hamster H, Sullivan A, Gordon S, White W, Falcone R W. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Physical Review Letters, 1993, 71(17): 2725–2728
CrossRef
Pubmed
Google scholar
|
[16] |
Hamster H, Sullivan A, Gordon S, Falcone R W. Short-pulse terahertz radiation from high-intensity-laser-produced plasmas. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1994, 49(1): 671–677
CrossRef
Pubmed
Google scholar
|
[17] |
Cook D J, Hochstrasser R M. Intense terahertz pulses by four-wave rectification in air. Optics Letters, 2000, 25(16): 1210–1212
CrossRef
Pubmed
Google scholar
|
[18] |
Johnson K, Price-Gallagher M, Mamer O, Lesimple A, Fletcher C, Chen Y, Lu X, Yamaguchi M, Zhang X C. Water vapor: an extraordinary terahertz wave source under optical excitation. Physics Letters, 2008, 372(38): 6037–6040 (Part A)
CrossRef
Google scholar
|
[19] |
Xie X, Dai J, Zhang X C. Coherent control of THz wave generation in ambient air. Physical Review Letters, 2006, 96(7): 075005
CrossRef
Pubmed
Google scholar
|
[20] |
Kim K Y, Glownia J H, Taylor A J, Rodriguez G. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Optics Express, 2007, 15(8): 4577–4584
CrossRef
Pubmed
Google scholar
|
[21] |
Kim K Y, Taylor A, Glownia J, Rodriguez G. Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions. Nature Photonics, 2008, 2(10): 605–609
CrossRef
Google scholar
|
[22] |
Kim K Y. Generation of coherent terahertz radiation in ultrafast laser-gas interactions. Physics of Plasmas, 2009, 16(5): 056706
CrossRef
Google scholar
|
[23] |
Karpowicz N, Zhang X C. Coherent terahertz echo of tunnel ionization in gases. Physical Review Letters, 2009, 102(9): 093001
CrossRef
Pubmed
Google scholar
|
[24] |
Ronne C, Thrane L, Åstrand P O, Wallqvist A, Mikkelsen K V, Keiding S R. Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation. Journal of Chemical Physics, 1997, 107(14): 5319–5331
CrossRef
Google scholar
|
[25] |
Thrane L, Jacobsen R H, Uhd Jepsen P, Keiding S R. THz reflection spectroscopy of liquid water. Chemical Physics Letters, 1995, 240(4): 330–333
CrossRef
Google scholar
|
[26] |
Kotz J C, Treichel P M, Townsend J. Chemistry and Chemical Reactivity. Raleigh, NC: Cengage Learning, 2012
|
[27] |
Engels D, Schmid-Burgk J, Walmsley C. Water maser emission from OH/IR stars. Astronomy & Astrophysics, 1986, 167: 129–144
|
[28] |
Neufeld D A, Melnick G J. Excitation of millimeter and submillimeter water masers. Astrophysical Journal, 1991, 368: 215–230
CrossRef
Google scholar
|
[29] |
Neufeld D A, Maloney P R, Conger S. Water maser emission from X-ray-heated circumnuclear gas in active galaxies. Astrophysical Journal, 1994, 436: 127–130
CrossRef
Google scholar
|
[30] |
Alfano R R, Shapiro S. Observation of self-phase modulation and small-scale filaments in crystals and glasses. Physical Review Letters, 1970, 24(11): 592–594
CrossRef
Google scholar
|
[31] |
Jimbo T, Caplan V L, Li Q X, Wang Q Z, Ho P P, Alfano R R. Enhancement of ultrafast supercontinuum generation in water by the addition of Zn2+ and K+ cations. Optics Letters, 1987, 12(7): 477–479
CrossRef
Pubmed
Google scholar
|
[32] |
Kandidov V, Kosareva O, Golubtsov I, Liu W, Becker A, Akozbek N, Bowden C M, Chin S L. Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation). Applied Physics B, Lasers and Optics, 2003, 77(2–3): 149–165
CrossRef
Google scholar
|
[33] |
Liu W, Petit S, Becker A, Aközbek N, Bowden C M, Chin S L. Intensity clamping of a femtosecond laser pulse in condensed matter. Optics Communications, 2002, 202(1–3): 189–197
CrossRef
Google scholar
|
[34] |
Dharmadhikari A, Rajgara F, Mathur D. Systematic study of highly efficient white light generation in transparent materials using intense femtosecond laser pulses. Applied Physics B, Lasers and Optics, 2005, 80(1): 61–66
CrossRef
Google scholar
|
[35] |
Kaya N, Strohaber J, Kolomenskii A A, Kaya G, Schroeder H, Schuessler H A. White-light generation using spatially-structured beams of femtosecond radiation. Optics Express, 2012, 20(12): 13337–13346
CrossRef
Pubmed
Google scholar
|
[36] |
Dharmadhikari J A, Steinmeyer G, Gopakumar G, Mathur D, Dharmadhikari A K. Femtosecond supercontinuum generation in water in the vicinity of absorption bands. Optics Letters, 2016, 41(15): 3475–3478
CrossRef
Pubmed
Google scholar
|
[37] |
Attwood D, Sakdinawat A. X-rays and Extreme Ultraviolet Radiation: Principles and Applications. Cambridge: Cambridge University Press, 2017
|
[38] |
McNaught S, Fan J, Parra E, Milchberg H M. A pump–probe investigation of laser-droplet plasma dynamics. Applied Physics Letters, 2001, 79(25): 4100–4102
CrossRef
Google scholar
|
[39] |
Düsterer S, Schwoerer H, Ziegler W, Ziener C, Sauerbrey R. Optimization of EUV radiation yield from laser-produced plasma. Applied Physics B, Lasers and Optics, 2001, 73(7): 693–698 doi:10.1007/s003400100730
|
[40] |
Kurz H G, Steingrube D S, Ristau D, Lein M, Morgner U, Kovačev M. High-order-harmonic generation from dense water microdroplets. Physical Review A, 2013, 87(6): 063811 doi:10.1103/PhysRevA.87.063811
|
[41] |
Flettner A, Pfeifer T, Walter D, Winterfeldt C, Spielmann C, Gerber G. High-harmonic generation and plasma radiation from water microdroplets. Applied Physics B, Lasers and Optics, 2003, 77(8): 747–751
CrossRef
Google scholar
|
[42] |
Donnelly T D, Rust M, Weiner I, Allen M, Smith R A, Steinke C A, Wilks S, Zweiback J, Cowan T E, Ditmire T. Hard X-ray and hot electron production from intense laser irradiation of wavelength-scale particles. Journal of Physics B, Atomic, Molecular, and Optical Physics, 2001, 34(10): L313–L320
CrossRef
Google scholar
|
[43] |
Malmqvist L, Rymell L, Hertz H M. Droplet‐target laser‐plasma source for proximity X‐ray lithography. Applied Physics Letters, 1996, 68(19): 2627–2629
CrossRef
Google scholar
|
[44] |
Berglund M, Rymell L, Hertz H M. Ultraviolet prepulse for enhanced X‐ray emission and brightness from droplet‐target laser plasmas. Applied Physics Letters, 1996, 69(12): 1683–1685
CrossRef
Google scholar
|
[45] |
Rymell L, Hertz H M. Droplet target for low-debris laser-plasma soft X-ray generation. Optics Communications, 1993, 103(1–2): 105–110
CrossRef
Google scholar
|
[46] |
Nikogosyan D N, Oraevsky A A, Rupasov V I. Two-photon ionization and dissociation of liquid water by powerful laser UV radiation. Chemical Physics, 1983, 77(1): 131–143
CrossRef
Google scholar
|
[47] |
Crowell R A, Bartels D M. Multiphoton ionization of liquid water with 3.0-5.0 eV photons. Journal of Physical Chemistry, 1996, 100(45): 17940–17949
CrossRef
Google scholar
|
[48] |
Kennedy P K. A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. I. Theory. IEEE Journal of Quantum Electronics, 1995, 31(12): 2241–2249
CrossRef
Google scholar
|
[49] |
Kennedy P K, Hammer D X, Rockwell B A. Laser-induced breakdown in aqueous media. Progress in Quantum Electronics, 1997, 21(3): 155–248
CrossRef
Google scholar
|
[50] |
Hirori H, Doi A, Blanchard F, Tanaka K. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3. Applied Physics Letters, 2011, 98(9): 091106
CrossRef
Google scholar
|
[51] |
Blanchard F, Razzari L, Bandulet H C, Sharma G, Morandotti R, Kieffer J C, Ozaki T, Reid M, Tiedje H F, Haugen H K, Hegmann F A. Generation of 1.5 μJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal. Optics Express, 2007, 15(20): 13212–13220
CrossRef
Pubmed
Google scholar
|
[52] |
Wu Q, Zhang X C. Free‐space electro‐optic sampling of terahertz beams. Applied Physics Letters, 1995, 67(24): 3523–3525
CrossRef
Google scholar
|
[53] |
Jin Q, E Y, Williams K, Dai J, Zhang X C. Observation of broadband terahertz wave generation from liquid water. Applied Physics Letters, 2017, 111(7): 071103
CrossRef
Google scholar
|
[54] |
Zhang L L, Wang W M, Wu T, Feng S J, Kang K, Zhang C L, Zhang Y, Li Y T, Sheng Z M, Zhang X C. Strong terahertz radiation from a liquid-water line. Physical Review Applied, 2019, 12(1): 014005
CrossRef
Google scholar
|
[55] |
Wang W M, Gibbon P, Sheng Z M, Li Y T. Integrated simulation approach for laser-driven fast ignition. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2015, 91(1): 013101
CrossRef
Pubmed
Google scholar
|
[56] |
Buccheri F, Zhang X C. Terahertz emission from laser-induced microplasma in ambient air. Optica, 2015, 2(4): 366–369
CrossRef
Google scholar
|
[57] |
Zhang J Z, Lam J K, Wood C F, Chu B T, Chang R K. Explosive vaporization of a large transparent droplet irradiated by a high intensity laser. Applied Optics, 1987, 26(22): 4731–4737
CrossRef
Pubmed
Google scholar
|
[58] |
Schaffer C, Nishimura N, Glezer E, Kim A, Mazur E. Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds. Optics Express, 2002, 10(3): 196–203
CrossRef
Pubmed
Google scholar
|
[59] |
Courvoisier F, Boutou V, Favre C, Hill S C, Wolf J P. Plasma formation dynamics within a water microdroplet on femtosecond time scales. Optics Letters, 2003, 28(3): 206–208
CrossRef
Pubmed
Google scholar
|
[60] |
Lindinger A, Hagen J, Socaciu L D, Bernhardt T M, Wöste L, Duft D, Leisner T. Time-resolved explosion dynamics of H2O droplets induced by femtosecond laser pulses. Applied Optics, 2004, 43(27): 5263–5269
CrossRef
Pubmed
Google scholar
|
[61] |
Stan C A, Milathianaki D, Laksmono H, Sierra R G, McQueen T A, Messerschmidt M, Williams G J, Koglin J E, Lane T J, Hayes M J, Guillet S A H, Liang M, Aquila A L, Willmott P R, Robinson J S, Gumerlock K L, Botha S, Nass K, Schlichting I, Shoeman R L, Stone H A, Boutet S. Liquid explosions induced by X-ray laser pulses. Nature Physics, 2016, 12(10): 966–971
CrossRef
Google scholar
|
[62] |
E Y, Jin Q, Tcypkin A, Zhang X C. Terahertz wave generation from liquid water films via laser-induced breakdown. Applied Physics Letters, 2018, 113(18): 181103
CrossRef
Google scholar
|
[63] |
Bebb H B, Gold A. Multiphoton ionization of hydrogen and rare-gas atoms. Physical Review, 1966, 143(1): 1–24
CrossRef
Google scholar
|
[64] |
DeMichelis C. Laser induced gas breakdown: a bibliographical review. IEEE Journal of Quantum Electronics, 1969, 5(4): 188–202
CrossRef
Google scholar
|
[65] |
Shen Y R. The Principles of Nonlinear Optics. New York: Wiley, 1984
|
[66] |
Lambropoulos P. Mechanisms for multiple ionization of atoms by strong pulsed lasers. Physical Review Letters, 1985, 55(20): 2141–2144
CrossRef
Pubmed
Google scholar
|
[67] |
Perry M D, Landen O L, Szöke A, Campbell E M. Multiphoton ionization of the noble gases by an intense 1014-W/cm2 dye laser. Physical Review A: General Physics, 1988, 37(3): 747–760
CrossRef
Pubmed
Google scholar
|
[68] |
Keldysh L. Ionization in the field of a strong electromagnetic wave. Soviet Physics, JETP, 1965, 20(5): 1307–1314
|
[69] |
Ammosov M V. Tunnel ionization of complex atoms and of atomic ions in an altemating electromagnetic field. Soviet Physics, JETP, 1987, 64: 1191
|
[70] |
Bass M, Barrett H. Avalanche breakdown and the probabilistic nature of laser-induced damage. IEEE Journal of Quantum Electronics, 1972, 8(3): 338–343
CrossRef
Google scholar
|
[71] |
Bloembergen N. Laser-induced electric breakdown in solids. IEEE Journal of Quantum Electronics, 1974, 10(3): 375–386
CrossRef
Google scholar
|
[72] |
Morgan C G. Laser-induced breakdown of gases. Reports on Progress in Physics, 1975, 38(5): 621–665
CrossRef
Google scholar
|
[73] |
Puliafito C, Steinert R. Short-pulsed Nd:YAG laser microsurgery of the eye: biophysical considerations. IEEE Journal of Quantum Electronics, 1984, 20(12): 1442–1448
CrossRef
Google scholar
|
[74] |
Noack J, Vogel A. Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density. IEEE Journal of Quantum Electronics, 1999, 35(8): 1156–1167
CrossRef
Google scholar
|
[75] |
Williams F, Varma S, Hillenius S. Liquid water as a lone‐pair amorphous semiconductor. Journal of Chemical Physics, 1976, 64(4): 1549–1554
CrossRef
Google scholar
|
[76] |
Sacchi C. Laser-induced electric breakdown in water. Journal of the Optical Society of America B, Optical Physics, 1991, 8(2): 337–345
CrossRef
Google scholar
|
[77] |
Feng Q, Moloney J V, Newell A C, Wright E M, Cook K, Kennedy P K, Hammer D X, Rockwell B A, Thompson C R. Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses. IEEE Journal of Quantum Electronics, 1997, 33(2): 127–137
CrossRef
Google scholar
|
[78] |
Raĭzer Y P. Reviews of topical problems: breakdown and heating of gases under the influence of a laser beam. Soviet Physics Uspekhi, 1966, 8(5): 650–673
|
[79] |
Hatanaka K, Ida T, Ono H, Matsushima S, Fukumura H, Juodkazis S, Misawa H. Chirp effect in hard X-ray generation from liquid target when irradiated by femtosecond pulses. Optics Express, 2008, 16(17): 12650–12657
CrossRef
Pubmed
Google scholar
|
[80] |
Dai J, Liu J, Zhang X C. Terahertz wave air photonics: terahertz wave generation and detection with laser-induced gas plasma. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 183–190
CrossRef
Google scholar
|
[81] |
Kreß M, Löffler T, Thomson M D, Dörner R, Gimpel H, Zrost K, Ergler T, Moshammer R, Morgner U, Ullrich J, Roskos H G. Determination of the carrier-envelope phase of few-cycle laser pulses with terahertz-emission spectroscopy. Nature Physics, 2006, 2(5): 327–331
CrossRef
Google scholar
|
[82] |
Gaal P, Kuehn W, Reimann K, Woerner M, Elsaesser T, Hey R. Internal motions of a quasiparticle governing its ultrafast nonlinear response. Nature, 2007, 450(7173): 1210–1213
CrossRef
Pubmed
Google scholar
|
[83] |
Roskos H, Thomson M, Kreß M, Löffler T. Broadband THz emission from gas plasmas induced by femtosecond optical pulses: from fundamentals to applications. Laser & Photonics Reviews, 2007, 1(4): 349–368
CrossRef
Google scholar
|
[84] |
Oh T, Yoo Y, You Y, Kim K Y. Generation of strong terahertz fields exceeding 8 MV/cm at 1 kHz and real-time beam profiling. Applied Physics Letters, 2014, 105(4): 041103
CrossRef
Google scholar
|
[85] |
Thomson M D, Blank V, Roskos H G. Terahertz white-light pulses from an air plasma photo-induced by incommensurate two-color optical fields. Optics Express, 2010, 18(22): 23173–23182
CrossRef
Pubmed
Google scholar
|
[86] |
Zhang X C, Shkurinov A, Zhang Y. Extreme terahertz science. Nature Photonics, 2017, 11(1): 16–18
CrossRef
Google scholar
|
[87] |
Dai J, Karpowicz N, Zhang X C. Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. Physical Review Letters, 2009, 103(2): 023001
CrossRef
Pubmed
Google scholar
|
[88] |
Wen H, Lindenberg A M. Coherent terahertz polarization control through manipulation of electron trajectories. Physical Review Letters, 2009, 103(2): 023902
CrossRef
Pubmed
Google scholar
|
[89] |
Dai J, Zhang X C. Terahertz wave generation from thin metal films excited by asymmetrical optical fields. Optics Letters, 2014, 39(4): 777–780
CrossRef
Pubmed
Google scholar
|
[90] |
Dey I, Jana K, Fedorov V Y, Koulouklidis A D, Mondal A, Shaikh M, Sarkar D, Lad A D, Tzortzakis S, Couairon A, Kumar G R. Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids. Nature Communications, 2017, 8(1): 1184
CrossRef
Pubmed
Google scholar
|
[91] |
Shen Y, Watanabe T, Arena D A, Kao C C, Murphy J B, Tsang T Y, Wang X J, Carr G L. Nonlinear cross-phase modulation with intense single-cycle terahertz pulses. Physical Review Letters, 2007, 99(4): 043901
CrossRef
Pubmed
Google scholar
|
[92] |
Turchinovich D, Hvam J M, Hoffmann M C. Self-phase modulation of a single-cycle terahertz pulse by nonlinear free-carrier response in a semiconductor. Physical Review B, 2012, 85(20): 201304
CrossRef
Google scholar
|
[93] |
Nanni E A, Huang W R, Hong K H, Ravi K, Fallahi A, Moriena G, Dwayne Miller R J, Kärtner F X. Terahertz-driven linear electron acceleration. Nature Communications, 2015, 6(1): 8486
CrossRef
Pubmed
Google scholar
|
[94] |
Zhang D, Fallahi A, Hemmer M, Wu X, Fakhari M, Hua Y, Cankaya H, Calendron A L, Zapata L E, Matlis N H, Kärtner F X. Segmented terahertz electron accelerator and manipulator (STEAM). Nature Photonics, 2018, 12(6): 336–342
CrossRef
Pubmed
Google scholar
|
[95] |
Jin Q, Dai J, E Y, Zhang X C. Terahertz wave emission from a liquid water film under the excitation of asymmetric optical fields. Applied Physics Letters, 2018, 113(26): 261101
CrossRef
Google scholar
|
[96] |
Kiran P P, Bagchi S, Krishnan S R, Arnold C L, Kumar G R, Couairon A. Focal dynamics of multiple filaments: Microscopic imaging and reconstruction. Physical Review A., 2010, 82(1): 013805
CrossRef
Google scholar
|
[97] |
Liu X L, Lu X, Liu X, Xi T T, Liu F, Ma J L, Zhang J. Tightly focused femtosecond laser pulse in air: from filamentation to breakdown. Optics Express, 2010, 18(25): 26007–26017
CrossRef
Pubmed
Google scholar
|
[98] |
Jin Q, E Y, Gao S, Zhang X C. Preference of subpicosecond laser pulses for terahertz wave generation from liquids. Advanced Photonics, 2020, 2(1): 015001
CrossRef
Google scholar
|
[99] |
Chin S L. Femtosecond Laser Filamentation. Vol. 55. New York: Springer US, 2010
|
[100] |
Docchio F. Lifetimes of plasmas induced in liquids and ocular media by single Nd:YAG laser pulses of different duration. EPL, 1988, 6(5): 407–412 (Europhysics Letters)
CrossRef
Google scholar
|
[101] |
Feng Q, Wright E M, Moloney J V, Newell A C. Laser-induced breakdown versus self-focusing for focused picosecond pulses in water. Optics Letters, 1995, 20(19): 1958–1960
CrossRef
Pubmed
Google scholar
|
[102] |
Dai J, Zhang X C. Terahertz wave generation from gas plasma using a phase compensator with attosecond phase-control accuracy. Applied Physics Letters, 2009, 94(2): 021117
CrossRef
Google scholar
|
[103] |
Dorney T D, Baraniuk R G, Mittleman D M. Material parameter estimation with terahertz time-domain spectroscopy. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2001, 18(7): 1562–1571
CrossRef
Pubmed
Google scholar
|
[104] |
Babushkin I, Kuehn W, Köhler C, Skupin S, Bergé L, Reimann K, Woerner M, Herrmann J, Elsaesser T. Ultrafast spatiotemporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases. Physical Review Letters, 2010, 105(5): 053903
CrossRef
Pubmed
Google scholar
|
[105] |
Bergé L, Skupin S, Köhler C, Babushkin I, Herrmann J. 3D numerical simulations of THz generation by two-color laser filaments. Physical Review Letters, 2013, 110(7): 073901
CrossRef
Pubmed
Google scholar
|
[106] |
Sprangle P, Peñano J R, Hafizi B, Kapetanakos C A. Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2004, 69(6): 066415
CrossRef
Pubmed
Google scholar
|
[107] |
Ponomareva E A, Stumpf S A, Tcypkin A N, Kozlov S A. Impact of laser-ionized liquid nonlinear characteristics on the efficiency of terahertz wave generation. Optics Letters, 2019, 44(22): 5485–5488
CrossRef
Pubmed
Google scholar
|
[108] |
Tcypkin A N, Ponomareva E A, Putilin S E, Smirnov S V, Shtumpf S A, Melnik M V, E Y, Kozlov S A, Zhang X C. Flat liquid jet as a highly efficient source of terahertz radiation. Optics Express, 2019, 27(11): 15485–15494
CrossRef
Pubmed
Google scholar
|
[109] |
E Y, Jin Q, Zhang X C. Enhancement of terahertz emission by a preformed plasma in liquid water. Applied Physics Letters, 2019, 115(10): 101101 doi:10.1063/1.5119812
|
[110] |
Ponomareva E A, Tcypkin A N, Smirnov S V, Putilin S E, Yiwen E, Kozlov S A, Zhang X C. Double-pump technique-one step closer towards efficient liquid-based THz sources. Optics Express, 2019, 27(22): 32855–32862
CrossRef
Pubmed
Google scholar
|
[111] |
Huang H H, Nagashima T, Hsu W H, Juodkazis S, Hatanaka K. Dual THz wave and X-ray generation from a water film under femtosecond laser excitation. Nanomaterials (Basel, Switzerland), 2018, 8(7): 523
CrossRef
Pubmed
Google scholar
|
[112] |
Huang H H, Nagashima T, Yonezawa T, Matsuo Y , Ng S H, Juodkazis S, Hatanaka K. Giant enhancement of THz wave emission under double-pulse excitation of thin water flow. Applied Sciences (Basel, Switzerland), 2020, 10(6): 2031
|
/
〈 | 〉 |